HDU3046 最大流(最小割)
Pleasant sheep and big big wolf |
| Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
| Total Submission(s): 19 Accepted Submission(s): 14 |
|
Problem Description
In ZJNU, there is a well-known prairie. And it attracts pleasant sheep and his companions to have a holiday. Big big wolf and his families know about this, and quietly hid in the big lawn. As ZJNU ACM/ICPC team, we have an obligation to protect pleasant sheep and his companions to free from being disturbed by big big wolf. We decided to build a number of unit fence whose length is 1. Any wolf and sheep can not cross the fence. Of course, one grid can only contain an animal.
Now, we ask to place the minimum fences to let pleasant sheep and his Companions to free from being disturbed by big big wolf and his companions. |
|
Input
There are many cases.
For every case: N and M(N,M<=200) |
|
Output
For every case:
First line output “Case p:”, p is the p-th case; |
|
Sample Input
4 6 |
|
Sample Output
Case 1: |
题意:
n*m的场地中,1表示羊,2表示狼,0表示空地,问建最少的篱笆能把狼和羊分离开。
代码:
//篱笆的长度是1,我们假设把狼放在S集合,羊放在T集合,求S,T的最小割就是答案。
//狼连接源点,羊连接汇点,相邻的各点之间连\无向边/。最小割=最大流。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
const int maxn=,inf=0x7fffffff;
struct edge{
int from,to,cap,flow;
edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct dinic{
int n,m,s,t;
vector<edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void addedge(int from,int to,int cap){
edges.push_back(edge(from,to,cap,));
edges.push_back(edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
edge&e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
edge&e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(bfs()){
memset(cur,,sizeof(cur));
flow+=dfs(s,inf);
}
return flow;
}
}dc;
int main()
{
int n,m,cas=,mp[][];
while(scanf("%d%d",&n,&m)==){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) scanf("%d",&mp[i][j]);
int s=,t=n*m+;
dc.init(n*m+);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
int nu=(i-)*m+j;
if(mp[i][j]==) dc.addedge(s,nu,inf);
if(mp[i][j]==) dc.addedge(nu,t,inf);
if(i>) dc.addedge(nu,nu-m,);
if(i<n) dc.addedge(nu,nu+m,);
if(j>) dc.addedge(nu,nu-,);
if(j<m) dc.addedge(nu,nu+,);
}
printf("Case %d:\n%d\n",++cas,dc.maxflow(s,t));
}
return ;
}
HDU3046 最大流(最小割)的更多相关文章
- 最大流-最小割 MAXFLOW-MINCUT ISAP
简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...
- 最大流&最小割 - 专题练习
[例1][hdu5889] - 算法结合(BFS+Dinic) 题意 \(N\)个点\(M\)条路径,每条路径长度为\(1\),敌人从\(M\)节点点要进攻\(1\)节点,敌人总是选择最优路径即最短路 ...
- UVa11248 Frequency Hopping(最大流+最小割)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33206 [思路] 最大流最小割. 可以确定的是如果不可行需要修改的 ...
- matlab练习程序(最大流/最小割)
学习这个算法是为学习图像处理中的图割算法做准备的. 基本概念: 1.最大流是一个有向图. 2.一个流是最大流,当且仅当它的残余网络中不包括增广路径. 3.最小割就是网络中所有割中值最小的那个割,最小割 ...
- 「网络流24题」「LuoguP2774」方格取数问题(最大流 最小割
Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于给定的方 ...
- HDU6582 Path【优先队列优化最短路 + dinic最大流 == 最小割】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6582 来源:2019 Multi-University Training Contest 1 题目大意 ...
- ISAP 最大流 最小割 模板
虽然这道题用最小割没有做出来,但是这个板子还是很棒: #include<stdio.h> #include<math.h> #include<string.h> # ...
- Codeforces 965 枚举轮数贪心分糖果 青蛙跳石头最大流=最小割思想 trie启发式合并
A /*#include<cstring>#include<algorithm>#include<queue>#include<vector>#incl ...
- 网络流 最大流—最小割 之SAP算法 详解
首先引入几个新名词: 1.距离标号: 所谓距离标号 ,就是某个点到汇点的最少的弧的数量(即边权值为1时某个点到汇点的最短路径长度). 设点i的标号为level[i],那么如果将满足level[i]=l ...
- nyoj-677-最大流最小割
677-碟战 内存限制:64MB 时间限制:2000ms 特判: No通过数:2 提交数:2 难度:4 题目描述: 知己知彼,百战不殆!在战争中如果被敌人掌握了自己的机密,失败是必然的.K国在一场战争 ...
随机推荐
- Chameleon-mini简介
ChameleonMini(变色龙)原德国大学在研究RFID安全时所设计的一块针对多频段多类型RFID模拟的硬件,其设计本身支持ISO14443和ISO15693标准协议,最简单直接的用法就是把获取到 ...
- 20145214 《Java程序设计》第10周学习总结
20145214 <Java程序设计>第10周学习总结 学习内容总结 计算机网络概述 在计算机网络中,现在命名IP地址的规定是IPv4协议,该协议规定每个IP地址由4个0-255之间的数字 ...
- 用逗号隔开简单数据保存为csv
用记事本编辑简单数据,用英文逗号隔开,编辑为多列,保存为.csv文件.可以用Excel打开编辑.
- javaIO--字节流
流---是指的一组有序的.有气垫和重点的字节集合,是对的护具传输的总称或者抽象. 流采用缓冲区技术,当写一个数据时,系统将数据发送到缓冲区而不是外部设备(如硬盘),当读一个数据时,系统实际是从缓冲区读 ...
- ALPHA-3
前言 失心疯病源3 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 今天完成了那些任务 16:00~20:18 援助行人模块并确定最终框架,顺便不死心的又找了一波车辆检测的dem ...
- PCA算法理解及代码实现
github:PCA代码实现.PCA应用 本文算法均使用python3实现 1. 数据降维 在实际生产生活中,我们所获得的数据集在特征上往往具有很高的维度,对高维度的数据进行处理时消耗的时间很大, ...
- 华为oj----iNOC产品部-杨辉三角的变形 .
此题提供三种方法,第一种,一开始就能想到的,设置一个足够大的数组存储生成的杨辉三角,然后进行判断就行,此方法参见:华为oj iNOC产品部-杨辉三角的变形 另一种方法是采用递归: 三角形的每行的个数为 ...
- 关于JS里面写JAVA代码的问题
最近做项目需要在JS脚本里面调用一个JAVA的函数得到数据,在网上查了很久,发现JS脚本里面不能写JAVA函数.只能把JS脚本里面的代码写进JSP文件里面的<script>标签内,然后写J ...
- Thinkphp5使用validate实现验证功能
作为前端er,对于验证这块有着切身的体会,虽然逐渐得心应手,但始终没有一个内置的功能拿来就能用.tp5恰好提供一个.本文简单介绍并实现以下.主要是实现一下. 验证的实现基于tp5内置的对象valida ...
- CentOS基础命令
为网卡配置静态IP地址建议通过交互式界面nmtui进行配置 firewalld和iptablesCentOS7使用firewald取代原来的iptables,但实际上底层还是iptables,在上层加 ...