Description

给定数列 {hn}前k项,其后每一项满足

hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k)

其中 a1,a2...ak 为给定数列。请计算 h(n),并将结果对 1000000007 取模输出。

Solution

常系数线性齐次递推

首先 \(A\) 的特征多项式是 \(x^k-\sum_{i=1}^{k}a_i*x^{k-i}\)

根据Cayley-Hamilton定理可以得到 \(f(A)=0\)

\(A^n=A^n\mod f(A)\)

以上并不知道怎么得来的....QwQ

于是我们可以快速幂求出 \(x^1,x^2.....x^n\) 的系数 \(c_i\),然后代入 \(A\)

最后答案就是 \(A^n*h_k=\sum_{i=0}^{k-1}c_i*A^i*h_k=\sum_{i=0}^{k-1}c_i*h_{i+k}\)

关于多项式取模法则:

如:\(5x^5+3x^4+x^3+x^2+6x+1 \mod (x^3+x^2+x+1)\)

我们先把 \((x^3+x^2+x+1)\) 乘以 \(x^2\),把被除的多项式中的 \(5x^5\) 消掉(做减法)

然后以此把次高位消掉,直到消到 \(x^3\) 为止,此题中可以 \(O(k^2)\) 暴力多项式取模

#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=4010,mod=1e9+7;
int n,k,a[N],h[N],mo[N],ans[N],b[N],t[N];
inline void mul(int *a,int *b,int *c){
for(int i=2*k-2;i>=0;i--)t[i]=0;
for(int i=0;i<k;i++)
if(a[i])
for(int j=0;j<k;j++)
t[i+j]=(t[i+j]+1ll*a[i]*b[j])%mod;
for(int i=2*k-2;i>=k;i--)//多项式取模,依次消掉最高位
if(t[i])
for(int j=k-1;j>=0;j--)
t[i-k+j]=(t[i-k+j]-1ll*mo[j]*t[i]+mod)%mod;
for(int i=0;i<k;i++)c[i]=t[i];
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>k;
for(int i=1;i<=k;i++)gi(a[i]),mo[k-i]=mod-a[i];
for(int i=1;i<=k;i++)gi(h[i]);
mo[k]=1;b[1]=1;ans[0]=1;
for(n-=k-1;n;n>>=1){
if(n&1)mul(ans,b,ans);
mul(b,b,b);
}
for(int i=k+1;i<=2*k-1;i++)
for(int j=1;j<=k;j++)h[i]=(h[i]+1ll*h[i-j]*a[j])%mod;
int ret=0;
for(int i=0;i<k;i++)ret=(ret+1ll*h[i+k]*ans[i])%mod;
if(ret<0)ret+=mod;
cout<<ret<<endl;
return 0;
}

bzoj 4161: Shlw loves matrixI的更多相关文章

  1. bzoj 4161 Shlw loves matrixI——常系数线性齐次递推

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4161 还是不能理解矩阵…… 关于不用矩阵理解的方法:https://blog.csdn.ne ...

  2. BZOJ 4161 Shlw loves matrixI ——特征多项式

    矩阵乘法递推的新姿势. 叉姐论文里有讲到 利用特征多项式进行递推,然后可以做到k^2logn #include <cstdio> #include <cstring> #inc ...

  3. bzoj 4161 Shlw loves matrixI【常系数线性齐次递推】

    并不会递推,不过板子挺好背的,只要是类似的递推都能用,但是注意c数组不能使负数 如果除了递推还有常数项的话,就用f[i]-f[i-1]的方式消掉常数项(然后多一个f[i-1]的项) #include& ...

  4. 【BZOJ4161】Shlw loves matrixI (常系数齐次线性递推)

    [BZOJ4161]Shlw loves matrixI (常系数齐次线性递推) 题面 BZOJ 题解 \(k\)很小,可以直接暴力多项式乘法和取模. 然后就是常系数齐次线性递推那套理论了,戳这里 # ...

  5. [BZOJ]4162: shlw loves matrix II

    Time Limit: 30 Sec  Memory Limit: 128 MB Description 给定矩阵 M,请计算 M^n,并将其中每一个元素对 1000000007 取模输出. Inpu ...

  6. bzoj4161: Shlw loves matrixI

    Description 给定数列 {hn}前k项,其后每一项满足 hn = a1*h(n-1) + a2*h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计 ...

  7. 【BZOJ4161】Shlw loves matrixI

    题目描述 给定数列 {hn}前k项,其后每一项满足 hn = a1h(n-1) + a2h(n-2) + ... + ak*h(n-k) 其中 a1,a2...ak 为给定数列.请计算 h(n),并将 ...

  8. BZOJ 3563 DZY Loves Chinese

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上 ...

  9. ●BZOJ 3309 DZY Loves Math

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...

随机推荐

  1. Revel框架学习

    1.准备工作 revel的下载需要git和hg(mercurial)工具,请先安装这两个工具. 配置好GOROOT和GOPATH环境变量,源码会默认下载到GOPATH第一个目录的src目录下. 一般g ...

  2. 数独高阶技巧入门之六——ALS

    ​在这个系列的第一篇(链及其简单应用)以及第四篇(简单异数链)中已经简单介绍过ALS结构的定义,即n格中存在n+1个不同的候选数 (双值格可视为特殊的ALS结构) .根据数独规则,在组成ALS的候选数 ...

  3. C#winform自定义滚动条

    1.控件 一个UserControl作为ScrollBg,一个panel作为ScrollBar 2.实现功能 (1)设置滚动条背景颜色和背景图片 (2)设置滚动条滑块的背景颜色和背景图片 (3)鼠标左 ...

  4. “全栈2019”Java第八十二章:嵌套接口能否访问外部类中的成员?

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  5. SFML从入门到放弃(0) 配置环境

    SFML从入门到放弃(0) 配置环境 恩..开始划水..学sfml的时候顺便做点笔记什么的.. 安装 在linux里面打开终端 然后输入 sudo apt-get install libsfml-de ...

  6. windows server2008 r2安装DNS服务器

    1.开始->管理工具->服务器管理器 2.角色->添加角色 3.服务器角色->DNS服务器 4.一直点击下一步,直至安装完成. (确认步骤时会提示,可能会需要重启服务器) 安装 ...

  7. (USB HID) Configuration Descriptor

    最近完成了HID的基本收發,使用的配置用了2個Endpoint,把一些特別重要要的地方紀錄下來 整個Configuration 分成4大部分 : 1. Configuration 2. Interfa ...

  8. thinkPhP + Apache + PHPstorm整合框架

    最近在学习使用 ThinkPhP,网上很多都是用一些整合好的服务框架,为了学习,在这里我简单的对Apache.PHP做一个原生的整合,希望对你有帮助. 步骤: ①下载 thinkPHP.PHP.Apa ...

  9. java中比较两个日期的大小

    String beginTime=new String("2014-08-15 10:22:22"); String endTime=new String("2014-0 ...

  10. Python 实现flatten功能

    from collections import Iterable def flatten(items): for x in items: if isinstance(x, Iterable) and ...