1. 安装显卡驱动

  • 检测显卡驱动及型号
$ sudo rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org
  • 添加ELPepo源
$ sudo rpm -Uvh http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm
  • 安装NVIDIA驱动检测
$ sudo yum install nvidia-detect
$ nvidia-detect -v
$ yum -y install kmod-nvidia

2. 安装CUDA\CUDNN

2.1 cuda

$ sudo sh cuda_9.0.176_384.81_linux.run
  • 测试cuda是否安装
$ cd /usr/local/cuda/samples/1_Utilities/deviceQuery
$ sudo make
$ ./deviceQuery

结果:

2.2 cudnn

  • 下载cudnn文件,需要注册账号。

    https://developer.nvidia.com/cudnn
  • 安装下载好的cuDNN安装包,如果你安装cuda的目录为默认目录,就可以直接使用如下指令安装:
tar -xvf cudnn-9.0-linux-x64-v7.1.tgz -C /usr/local/

2.3 环境变量设置

  • 环境变量
$ vim ~/.bashrc
在其最后添加:
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda
  • cuDNN建立连接
$ cd /usr/local/cuda/lib64
$ sudo rm -rf libcudnn.so libcudnn.so.7 #删除原有版本号,版本号在cudnn/lib64中查询
$ sudo ln -s libcudnn.so.7.0.5 libcudnn.so.7 #生成软连接,注意自己下载的版本号
$ sudo ln -s libcudnn.so.7 libcudnn.so
$ sudo ldconfig #立即生效

3. 安装TensorFlow-gpu

  • 安装anaconda,可以用来建立python3和TensorFlow的一些以来环境。
$ wget https://repo.anaconda.com/archive/Anaconda3-5.2.0-Linux-x86_64.sh	#下载anaconda
$ bash anaconda.sh #安装anaconda
$ vim /root/.bashrc #加入环境变量
# 最后一行添加:
export PATH="/root/anaconda3/bin:$PATH"
$ source /root/.bashrc
  • 安装TensorFlow
pip install tensorflow-gpu

测试

输入:

$ python
>>> import tensorflow

显示:

>>> import tensorflow
/root/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
>>>

未报错,安装成功。

转载请注明出处。

https://www.cnblogs.com/sunhongwen/p/9554057.html

Centos配置深度学习开发环境的更多相关文章

  1. 从零开始在ubuntu上配置深度学习开发环境

    从零开始在ubuntu上配置深度学习开发环境 昨天一不小心把原来配置好的台式机的开发环境破坏了,调了半天没有调回来,索性就重装一次ubuntu系统.这篇文章主要记录一个简单的.‘傻瓜式’教程. 一.U ...

  2. 解决 Ubuntu 18.10 使用较新的独立显卡输出无法初始化图形界面并配置深度学习开发环境

    原文地址:解决 Ubuntu 18.10 使用较新的独立显卡输出无法初始化图形界面并配置深度学习开发环境 0x00 配置 硬件 OS: Ubuntu 18.10 Base Board: ASUS WS ...

  3. Ubuntu18.04下配置深度学习开发环境

    在Ubuntu18.04下配置深度学习/机器学习开发环境 1.下载并安装Anaconda 下载地址:https://www.anaconda.com/distribution/#linux 安装步骤: ...

  4. 深度学习开发环境搭建教程(Mac篇)

    本文将指导你如何在自己的Mac上部署Theano + Keras的深度学习开发环境. 如果你的Mac不自带NVIDIA的独立显卡(例如15寸以下或者17年新款的Macbook.具体可以在"关 ...

  5. supervessel-免费云镜像︱GPU加速的Caffe深度学习开发环境

    开发环境介绍 在SuperVessel云上,我们为大家免费提供当前火热的caffe深度学习开发环境.SuperVessel的Caffe有如下优点: 1) 免去了繁琐的Caffe环境的安装配置,即申请即 ...

  6. ubuntu16.04系统深度学习开发环境、常用软件环境(如vscode、wine QQ、 360wifi驱动(第三代暂无))搭建相关资料

    事后补充比较全面的(找对资料真的省一半功夫):https://www.jianshu.com/p/5b708817f5d8?from=groupmessage Ubuntu16.04 + 1080Ti ...

  7. Centos配置为驱动程序开发环境

    安装完centos后,写了一个驱动测试程序Hello.编译过程出现如下错误: make: *** /lib/modules/2.6.32-220.4.1.el6.i686/build: No such ...

  8. 深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow

    深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直 ...

  9. 深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow

    接上文<深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0>,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡 ...

随机推荐

  1. JAVA给你讲它的故事

    计算机语言如果你将它当做一个产品,就像我们平时用的电视机.剃须刀.电脑.手机等, 他的发展也是有规律的. 任何一个产品的发展规律都是:向着人更加容易使用.功能越来越强大的方向发展. 那么,我们的计算机 ...

  2. Oracle特性总结

    最近开发项目使用了Oracle,根据总体架构一开始选择使用Mybatis,发现核心模块用Mybatis效率不够,切换到jdbc实现,效率大增.Oracle可是个庞然大物,特性多多,丝毫不能马虎,否则很 ...

  3. Python基础 List和Tuple类型

    python 创建list python 内置一种数据类型是列表: 列表是一种有序的集合,可以随时添加和 删除其中的元素,list 中的元素是按照顺序排列的.构建list 直接用 [ ], list ...

  4. Mysql的TIMESTAMPDIFF和TIMESTAMPADD的用法

    [1.]TIMESTAMPDIFF(interval,colum1,colum2) 字段类型:date或者datetime 计算过程:colum2减去colum1,即后面的减去前面的 计算结果:整数 ...

  5. 10.安装使用jenkins及其插件

    持续集成 1.安装jenkins 安装依赖 [root@git ~]# yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel rpm包下载: ...

  6. IO流之字节流

    IO流分类 按照数据流向 输入流:从外界(键盘.网络.文件…)读取数据到内存 输出流:用于将程序中的数据写出到外界(显示器.文件…) 数据源 目的地 交通工具 按照数据类型 字节流:主要用来处理字节或 ...

  7. 『Python基础-6』if语句, if-else语句

    # 『Python基础-6』if语句, if-else语句 目录: 条件测试 if语句 if-else语句 1. 条件测试 每条if语句的核心都是一个值为True或False的表达式,这种表达式被称为 ...

  8. meta标签的总结

    一.meta到底是什么? 英文解释:The <meta> tag provides metadata about the HTML document. Metadata will not ...

  9. XNA+WPF solution worked

    Cory Petosky's website Edit 11/17/2010: While this article's XNA+WPF solution worked when I wrote it ...

  10. 从PRISM开始学WPF(八)导航Navigation-更新至Prism7.1

    原文:从PRISM开始学WPF(八)导航Navigation-更新至Prism7.1 0x6Navigation [7.1updated] Navigation 在wpf中并没有变化 Basic Na ...