【题意】给定正边权有向图,车油量上限C,每个点可以花费pi加油至min(C,ci),走一条边油-1,T次询问s点出发带钱q,旅行路程至少为d的最多剩余钱数。

n<=100,m<=1000,C<=10^5,q<=n^2

【算法】动态规划

【题解】官方题解

虽然不是DAG,但是由于q很小的特点,将q加入状态就满足DP的无后效性了。

令f[i][q]表示当前在i点并在i点加油,加油前钱数为q的最大路程。(q<pi时,f[i][q]=0)

假设下一加油点为j,转移方程:f[i][q]=max{f[j][q-pi]+w(i,j,ci)},其中w(i,j,c)表示i点到j点,油量为c的最大路程。(ci=min(ci,C))

现在主要问题是预处理w(i,j,ci),发现每走一条边c只会减少1,符合倍增变化规则一致的特点,考虑图上倍增。

虽然不是DAG,但是c加入状态就满足DP的无后效性了。

g(i,j,k)表示i点到j点,油量为2^k的最大路程,显然g(i,j,k)=max{g(i,x,k-1)+g(x,j,k-1)},x是中转点。

对于w(i,j,ci),将ci拆分二进制,每次枚举x作为中转点后直接取倍增数组g计算答案。

【倍增的思想是很经典的,将需要的ci拆分二进制后将1的位用倍增数组堆起来。但是应用到图上每次就都需要遍历全图作为可能的中转点,最后找到最优答案。】

最后得到了f[i][q],对每个询问在f[s]上二分到第一个大于等于d的f[s][q],q就是答案。

复杂度O(n^4+n^3*log k+T*log n^2),瓶颈复杂度O(n^4)。(n^4过100……)

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
using namespace std;
int read(){
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
const int maxn=,maxm=,maxk=,inf=0x3f3f3f3f;
int n,m,C,T,tot;
int g[maxn][maxn][maxk],p[maxn],c[maxn],A[maxn],B[maxn],w[maxn][maxn],f[maxn][maxn*maxn];
void cmax(int &a,int b){if(b>a)a=b;}
int main(){
n=read();m=read();C=read();T=read();
for(int i=;i<=n;i++)for(int j=;j<=n;j++)for(int k=;k<=;k++)g[i][j][k]=-inf;
for(int i=;i<=n;i++)p[i]=read(),c[i]=min(C,read()),g[i][i][]=;
for(int i=;i<=m;i++){
int u=read(),v=read(),w=read();
g[u][v][]=w;
}
for(int k=;k<=;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int x=;x<=n;x++)cmax(g[i][j][k],g[i][x][k-]+g[x][j][k-]);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++)A[j]=-inf;A[i]=;
for(int k=;k<=;k++)if((c[i]>>k)&){
for(int j=;j<=n;j++){
B[j]=-inf;
for(int x=;x<=n;x++)cmax(B[j],A[x]+g[x][j][k]);
}
for(int j=;j<=n;j++)A[j]=B[j];
}
for(int j=;j<=n;j++)w[i][j]=A[j];
}
for(int q=;q<=n*n;q++)
for(int x=;x<=n;x++)if(q>=p[x])
for(int y=;y<=n;y++)cmax(f[x][q],f[y][q-p[x]]+w[x][y]);
while(T--){
int s=read(),q=read(),d=read();
int pl=lower_bound(f[s],f[s]+n*n+,d)-f[s];
if(pl>q)printf("-1\n");else printf("%d\n",q-pl);
}
return ;
}

【LibreOJ】#539. 「LibreOJ NOIP Round #1」旅游路线的更多相关文章

  1. LibreOJ #539. 「LibreOJ NOIP Round #1」旅游路线(倍增+二分)

    哎一开始看错题了啊T T...最近状态一直不对...最近很多傻逼题都不会写了T T 考虑距离较大肯定不能塞进状态...钱数<=n^2能够承受, 油量再塞就不行了...显然可以预处理出点i到j走c ...

  2. LOJ#539. 「LibreOJ NOIP Round #1」旅游路线

    n<=100,m<=1000的图,在此图上用油箱容量C<=1e5的车来旅行,旅行时,走一条边会耗一单伟油,在点i时,若油量<ci,则可以把油以pi的价格补到ci,pi<= ...

  3. LOJ #539. 「LibreOJ NOIP Round #1」旅游路线 倍增floyd + 思维

    考试的时候是这么想的: 求出每一个点花掉 $i$ 的花费向其他点尽可能走的最长距离,然后二分这个花费,找到第一个大于 $d$ 的就输出$.$然而,我这个记忆化搜索 $TLE$ 的很惨$.$这里讲一下正 ...

  4. 「LOJ 539」「LibreOJ NOIP Round #1」旅游路线

    description 题面较长,这里给出题目链接 solution 考虑预处理出\(f[i][j]\)表示在第\(i\)个点加满油后,从第\(i\)个点出发,至多消耗\(j\)元钱走过的最大路程,那 ...

  5. LibreOj #539. 「LibreOJ NOIP Round #1」旅游路线

    题目链接 做完这道题,我深知当一个问题复杂度过高的时候,把一些可以分离的操作都分散开,可以大幅度降低复杂度..... 发现无论有多少钱,每到一个点后扩展到的距离被限制在 \(min(C, c[i])\ ...

  6. 「LibreOJ NOIP Round #1」旅游路线

    Description T 城是一个旅游城市,具有 nnn 个景点和 mmm 条道路,所有景点编号为 1,2,...,n1,2,...,n1,2,...,n.每条道路连接这 nnn 个景区中的某两个景 ...

  7. LibreOJ #517. 「LibreOJ β Round #2」计算几何瞎暴力

    二次联通门 : LibreOJ #517. 「LibreOJ β Round #2」计算几何瞎暴力 /* LibreOJ #517. 「LibreOJ β Round #2」计算几何瞎暴力 叫做计算几 ...

  8. LibreOJ #528. 「LibreOJ β Round #4」求和

    二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...

  9. LibreOJ #527. 「LibreOJ β Round #4」框架

    二次联通门 : LibreOJ #527. 「LibreOJ β Round #4」框架 /* LibreOJ #527. 「LibreOJ β Round #4」框架 %% xxy dalao 对于 ...

随机推荐

  1. java — 值传递和引用传递

    在 Java 应用程序中永远不会传递对象,而只传递对象引用.因此是按引用传递对象.Java 应用程序按引用传递对象这一事实并不意味着 Java 应用程序按引用传递参数.参数可以是对象引用,而 Java ...

  2. 转Web开发的发展史---Web开发技术的演变

    转自:http://blog.csdn.net/zzzkk2009/article/details/9849431 在接下来的几个月时间里,我打算写一系列关于完整web开发的文章.这第一篇文章虽然有所 ...

  3. 【Redis】- 主从复制

    Redis跟MySQL一样,拥有非常强大的主从复制功能,而且还支持一个master可以拥有多个slave,而一个slave又可以拥有多个slave,从而形成强大的多级服务器集群架构. redis的主从 ...

  4. C#窗口文件双击打开时出错

    出错原因: 1. 修改了该窗口文件的.Designer.cs文件中:#region Windows 窗体设计器生成的代码这里面的代码,导致运行不正常. 为了传递数据,我在构造函数中增加了传递的值. 需 ...

  5. Ubuntu编译内核树

    什么是内核树?刚开始我也没弄明白,通过这几天的学习,有所感悟,就说说我的理解吧!从形式上看,内核树与内核源码的目录结构形式是相同的,都是由各个层次的文件目录结构组成,但是其中的具体内容肯定是不同的.从 ...

  6. Java InputStream转File

    文件处于磁盘上或者流处于内存中 在输入流有已知的和预处理的数据时,如在硬盘上的文件或者在流处于内存中.这种情况下,不需要做边界校验,并且内存容量条件允许的话,可以简单的读取并一次写入. InputSt ...

  7. zoj3209-Treasure Map

    给出一个左下角为\((0,0)\),右上角为\((n,m)\)的矩形,再给出\(k\)个在大矩形内的小矩形(可以重合),问是否能用这些小矩形完全覆盖这个大矩形,并且没有重合,如果可以至少需要多少个. ...

  8. BZOJ4897 THUSC2016成绩单(区间dp)

    拿走一个区间的代价只与最大最小值有关,并且如果最后一次拿走包含区间右端点的子序列一定不会使答案更劣,于是设f[i][j][x][y]为使i~j区间剩余最小值为x最大值为y且若有数剩余一定包含j的最小代 ...

  9. [洛谷P4174][NOI2006]最大获利

    题目大意:同Petya and Graph,数据范围改成$n\leqslant5\times10^3,m\leqslant5\times10^4$ 题解:同上 卡点:无 C++ Code: #incl ...

  10. 【以前的空间】Poj 3071 Cut the Sequence

    dp+单调性+平衡树 在看某篇论文中看到这道题,但是那篇论文不如这个http://www.cnblogs.com/staginner/archive/2012/04/02/2429850.html 大 ...