4517: [Sdoi2016]排列计数

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 911  Solved: 566
[Submit][Status][Discuss]

Description

求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000
 

Output

输出 T 行,每行一个数,表示求出的序列数

 

Sample Input

5
1 0
1 1
5 2
100 50
10000 5000

Sample Output

0
1
20
578028887
60695423
 

错排递推式:f(n)=(n-1)*[f(n-1)+f(n-2)] f[0]=1,f[1]=0,f[2]=1;
显然本题中确定的位置有:${{C}_{n}^{m}}$种可能的组合
剩下来的位置全部都要错排,即套用错排公式即可$${ans={C}_{n}^{m}*F[n-m]}$$

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
#define maxn 1000010
#define llg long long
#define yyj(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
#define md 1000000007 llg T,n,m;
llg D[maxn],N[maxn]; void make_D()//错排递推式 f(n)=(n-1)*[f(n-1)+f(n-2)]
{
D[]=,D[]=;
for (llg i=;i<=maxn-;i++) D[i]=(i-)*(D[i-]+D[i-]),D[i]%=md;
} void maken()
{
N[]=;
for (llg i=;i<=maxn-;i++) N[i]=N[i-]*i,N[i]%=md;
} llg ksm(llg a,llg b,llg c)
{
if (b==) return ;
a%=md;
llg ans=;
while (b!=)
{
if (b%) ans*=a,ans%=md;
b/=;
a*=a, a%=md;
}
return ans;
} int main()
{
cin>>T;
N[]=D[]=;
maken(),make_D();
while (T--)
{
scanf("%lld%lld",&n,&m);
llg x=(N[n-m]*N[m]) % md;
llg ni=ksm(x,md-,md);
printf("%lld\n",((N[n]*ni) % md)*D[n-m] % md);
}
return ;
}

BZOJ 4517: [Sdoi2016]排列计数的更多相关文章

  1. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  2. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  3. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  4. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  5. Bzoj 4517: [Sdoi2016]排列计数(排列组合)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...

  6. BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...

  7. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  8. bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】

    第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}( ...

  9. BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合

    从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...

随机推荐

  1. Android四大核心组件之ContentProvider

    实验内容 学习ContextProvider用法 编码实现简单ContextProvider功能 实验要求 通过简单代码了解ContextProvider功能和用法 实验步骤 ContextProvi ...

  2. jq弹框确认

    function delCustomer(id,num){ var r=confirm("友情提醒:确认要删除客户吗?"); if (r==true){ $.ajax({ type ...

  3. 搭建Python+Django开发环境

    第一步:安装python. 常见的windows系统,直接python网站下载 最新的版本python3.5. python安装好之后,配置好环境变量.使得python和 pip命令能够正常使用. 第 ...

  4. rosetta2014/2015安装时出现INCLUDE(keyerror)错误,解决。

    错误: KeyError: 'INCLUDE' 使编译出错 解决方法: [usrname@host source]$ vim tools/build/site.settings 注释# "i ...

  5. NOI 05:最高的分数描述

    描述 孙老师讲授的<计算概论>这门课期中考试刚刚结束,他想知道考试中取得的最高分数.因为人数比较多,他觉得这件事情交给计算机来做比较方便.你能帮孙老师解决这个问题吗? 输入输入两行,第一行 ...

  6. 自定义置顶TOP按钮

    简述一下,分为三个步骤: 1. 添加Html代码 2. 调整Css样式 3. 添加Jquery代码 具体代码如下: <style type="text/css"> #G ...

  7. jeesz源码下载

    大型分布式企业架构 jeesz,百度去搜索jeesz

  8. s3c2440 上txt 小说阅读器

    文件结构 Makefile: CROSSCOMPILE := arm-linux- CFLAGS := -Wall -O2 -c LDFLAGS := -lm -lfreetype CC := $(C ...

  9. AC6102 开发板千兆以太网UDP传输实验

    AC6102 开发板千兆以太网UDP传输实验 在芯航线AC6102开发板上,设计了一路GMII接口的千兆以太网电路,通过该以太网电路,用户可以将FPGA采集或运算得到的数据传递给其他设备如PC或服务器 ...

  10. python入门练习题3(函数)

    1.写函数: 如有以下两个列表 l1 = [...] l2 = [] 第一个列表中的数字无序不重复排列,第二个列表为空列表 需求: 取出第一个列表的最小值 放到第二个列表的首个位置, 取出第一个列表的 ...