http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf

Abstract

This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Distinctive Image Features from Scale-Invariant的更多相关文章

  1. Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍

    Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它. ...

  2. Computer Vision_33_SIFT:Distinctive Image Features from Scale-Invariant Keypoints——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. Distinctive Image Features from Scale-Invariant Keypoints(SIFT) 基于尺度不变关键点的特征描述子——2004年

    Abstract摘要本文提出了一种从图像中提取特征不变性的方法,该方法可用于在对象或场景的不同视图之间进行可靠的匹配(适用场景和任务).这些特征对图像的尺度和旋转不变性,并且在很大范围的仿射失真.3d ...

  4. (转载)Universal Correspondence Network

    转载自:Chris Choy's blog Universal Correspondence Network In this post, we will give a very high-level ...

  5. Computer Vision_18_Image Stitching:Automatic Panoramic Image Stitching using Invariant Features——2007

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  6. Computer Vision_33_SIFT:An Improved RANSAC based on the Scale Variation Homogeneity——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  7. Computer Vision_33_SIFT:LIFT: Learned Invariant Feature Transform——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  8. Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Computer Vision_33_SIFT:PCA-SIFT A More Distinctive Representation for Local Image Descriptors——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

随机推荐

  1. TypeScript的崛起

    今天要讨论的话题是TypeScript.之前在微博上转载过一篇<The Rise of TypeScript?>的文章,今天来谈一下我的感想. 很多朋友应该都了解,TypeScript是微 ...

  2. Z-XML团队 软件工程课之我感我思我收获

    <软件工程>这门课像我们的诤友,不断督促我们前进,又不断指引我们收获.时间飞逝,我们Z-XML团队一个个完成了课程中的所有任务,一步步走到了期末年末. 走的远了,也该回头看看.全员7人回顾 ...

  3. 2016 Multi-University Training Contest 8

    solved 4/11 2016 Multi-University Training Contest 8 贪心 1001 Ball(BH) 代码: #include <bits/stdc++.h ...

  4. eBay Notification介绍

      1.简介 "通知服务"(约定为Notification的中文名称),是EbayAPI提供的一个便捷的工具,具有实时性的特点.   其设计思想基于发布-订阅模式.一旦客户端订阅了 ...

  5. Flo's Restaurant[HDU1103]

    Flo's Restaurant Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. BZOJ3463 : [COCI2012] Inspector

    考虑将序列分成$\sqrt{n\log n}$块,每块维护下凸壳,修改时在相应块打上需要修改的标记. 查询时,对于两端零散部分暴力查询. 对于中间的块,如果有修改标记,则暴力重构. 然后在凸壳上查询时 ...

  7. BZOJ3672 : [Noi2014]购票

    设d[i]表示i到1的距离 f[i]=w[i]+min(f[j]+(d[i]-d[j])*v[i])=w[i]+d[i]*v[i]+min(-d[j]*v[i]+f[j]) 对这棵树进行点分治,每次递 ...

  8. 【BZOJ】1018: [SHOI2008]堵塞的交通traffic

    http://www.lydsy.com/JudgeOnline/problem.php?id=1018 题意:有2行,每行有c(c<=100000)个城市,则一共有c-1个格子,现在有q(q& ...

  9. 【转】Android APK的数字签名的作用和意义

    1. 什么是数字签名? 数字签名就是为你的程序打上一种标记,来作为你自己的标识,当别人看到签名的时候会知道它是与你相关的     2. 为什么要数字签名? 最简单直接的回答: 系统要求的.  Andr ...

  10. [FollowUp] Combinations 组合项

    这是Combinations 组合项 的延伸,在这里,我们允许不同的顺序出现,那么新的题目要求如下: Given two integers n and k, return all possible c ...