http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf

Abstract

This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Distinctive Image Features from Scale-Invariant的更多相关文章

  1. Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍

    Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它. ...

  2. Computer Vision_33_SIFT:Distinctive Image Features from Scale-Invariant Keypoints——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. Distinctive Image Features from Scale-Invariant Keypoints(SIFT) 基于尺度不变关键点的特征描述子——2004年

    Abstract摘要本文提出了一种从图像中提取特征不变性的方法,该方法可用于在对象或场景的不同视图之间进行可靠的匹配(适用场景和任务).这些特征对图像的尺度和旋转不变性,并且在很大范围的仿射失真.3d ...

  4. (转载)Universal Correspondence Network

    转载自:Chris Choy's blog Universal Correspondence Network In this post, we will give a very high-level ...

  5. Computer Vision_18_Image Stitching:Automatic Panoramic Image Stitching using Invariant Features——2007

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  6. Computer Vision_33_SIFT:An Improved RANSAC based on the Scale Variation Homogeneity——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  7. Computer Vision_33_SIFT:LIFT: Learned Invariant Feature Transform——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  8. Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Computer Vision_33_SIFT:PCA-SIFT A More Distinctive Representation for Local Image Descriptors——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

随机推荐

  1. myeclipse打war包

    转自:http://wjlvivid.iteye.com/blog/1401707 右键选中项目,选择export然后选择J2EE->WAR File,点击next 接下来指定war包的存放路径 ...

  2. 浅谈c++ new and delete or new [] and delete []

    http://www.cnblogs.com/hazir/p/new_and_delete.html 在 C++ 中,你也许经常使用 new 和 delete 来动态申请和释放内存,但你可曾想过以下问 ...

  3. php生成二维码的插件phpqrcode

    参考网址: http://www.thinkphp.cn/topic/7749.html http://blog.csdn.net/stxyc/article/details/44650971 php ...

  4. loadrunner数据库MySQL参数化列表乱码问题

    问题现象: 解决方法: 1.配置mysql ODBC数据源里面的编码格式: 2.配置lr创建数据库连接: 3.再次查看:

  5. http://jingyan.baidu.com/article/f3ad7d0ffc061a09c3345bf0.html

    http://jingyan.baidu.com/article/f3ad7d0ffc061a09c3345bf0.html

  6. C++ windows遍历目录

    bool Search(TCHAR *Path,TCHAR *File) { HANDLE hFind; WIN32_FIND_DATA wfd; ZeroMemory(&wfd,sizeof ...

  7. topcoder 594 DIV2 foxandclassroom

    暴力枚举 1 #include <iostream> #include <vector> #include <string> using namespace std ...

  8. 【wikioi】1222 信与信封问题(二分图+特殊的技巧)

    http://wikioi.com/problem/1222/ 一开始我就想到这样构图的,即可能的连边.但是似乎无法判断. 然后想来想去想不出来.. 题解: 同样是二分图,将可能的连边,然后跑一次最大 ...

  9. ibatis插入数据返回ID的方法

    ibatis插入数据返回ID的方法 主要就是利用seelctkey来获取这个ID值,但是oracle和mysql的区别还是很大的 oracle的用法 <insert id="inser ...

  10. [LintCode] Cosine Similarity 余弦公式

    Cosine similarity is a measure of similarity between two vectors of an inner product space that meas ...