http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf

Abstract

This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Distinctive Image Features from Scale-Invariant的更多相关文章

  1. Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍

    Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它. ...

  2. Computer Vision_33_SIFT:Distinctive Image Features from Scale-Invariant Keypoints——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. Distinctive Image Features from Scale-Invariant Keypoints(SIFT) 基于尺度不变关键点的特征描述子——2004年

    Abstract摘要本文提出了一种从图像中提取特征不变性的方法,该方法可用于在对象或场景的不同视图之间进行可靠的匹配(适用场景和任务).这些特征对图像的尺度和旋转不变性,并且在很大范围的仿射失真.3d ...

  4. (转载)Universal Correspondence Network

    转载自:Chris Choy's blog Universal Correspondence Network In this post, we will give a very high-level ...

  5. Computer Vision_18_Image Stitching:Automatic Panoramic Image Stitching using Invariant Features——2007

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  6. Computer Vision_33_SIFT:An Improved RANSAC based on the Scale Variation Homogeneity——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  7. Computer Vision_33_SIFT:LIFT: Learned Invariant Feature Transform——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  8. Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Computer Vision_33_SIFT:PCA-SIFT A More Distinctive Representation for Local Image Descriptors——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

随机推荐

  1. Jquery鼠标滚动到页面底部自动加载更多内容,使用分页

    index.php代码   [html] view plaincopy <!DOCTYPE html PUBLIC ;}                .single_item{padding: ...

  2. SQL Server 2005 中实现通用的异步触发器架构

    在SQL Server 2005中,通过新增的Service Broker可以实现异步触发器的处理功能.本文提供一种使用Service Broker实现的通用异步触发器方法. 在本方法中,通过Serv ...

  3. 【spring bean】bean的配置和创建方式

    ---恢复内容开始--- 项目结构如下: lib如下: 1.首先建立SayHell.java接口 package com.it.sxd; public interface SayHell { publ ...

  4. 【shiro】一、基础概念

    来源:http://blog.csdn.net/swingpyzf/article/details/46342023/ &&&& http://jinnianshilo ...

  5. C#之MemberwiseClone与Clone

    MemberwiseClone 方法创建一个浅表副本,具体来说就是创建一个新对象,然后将当前对象的非静态字段复制到该新对象.如果字段是值类型的,则对该字段执行逐位复制.如果字段是引用类型,则复制引用但 ...

  6. 哈希表--HashSet<T>

    .Net3.5之后出现了HashSet<T>,硬翻译过来就是“哈希集合”,跟“哈希”两字挂钩说明这种集合的内部实现用到了哈希算法,用Reflector工具就可以发现,HashSet< ...

  7. Period[HDU1358]

    Period Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  8. BZOJ3075 : [Usaco2013]Necklace

    首先对b串做kmp求出nxt数组. 设f[i][j]表示考虑了a的前i个字符,在b中匹配到了j的最长长度,按照kmp算法直接转移即可. $ans=n-\max(f[n][j])$. 时间复杂度$O(n ...

  9. 使用jQuery操作Cookies的实现代码

    Cookie是由服务器端生成,发送给User-Agent(一般是浏览器),浏览器会将Cookie的key/value保存到某个目录下的文本文件内,下次请求同一网站时就发送该Cookie给服务器(前提是 ...

  10. 【wikioi】1034 家园(最大流+特殊的技巧)

    http://wikioi.com/problem/1034/ 太神了这题. 其实一开始我以为是费用流,但是总感觉不对. 原因是我没看到一句话,特定的时刻到达特定的点!! 也就是说,并不是每艘船每次都 ...