Weka算法Classifier-tree-J48源代码分析(一个)基本数据结构和算法
大约一年,我没有照顾的博客,再次拿起笔不知从何写上,想来想去手从最近使用Weka要正确书写。
Weka为一个Java基础上的机器学习工具。上手简单,并提供图形化界面。提供如分类、聚类、频繁项挖掘等工具。本篇文章主要写一下分类器算法中的J48算法及事实上现。
一、算法
J48是基于C4.5实现的决策树算法。对于C4.5算法相关资料太多了。笔者在这里转载一部分(来源:http://blog.csdn.net/zjd950131/article/details/8027081)
C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。
它的目标是监督学习:给定一个数据集,当中的每个元组都能用一组属性值来描写叙述,每个元组属于一个相互排斥的类别中的某一类。C4.5的目标是通过学习。找到一个从属性值到类别的映射关系,而且这个映射能用于对新的类别未知的实体进行分类。
C4.5由J.Ross Quinlan在ID3的基础上提出的。ID3算法用来构造决策树。决策树是一种类似流程图的树结构,当中每一个内部节点(非树叶节点)表示在一个属性上的測试,每一个分枝代表一个測试输出。而每一个树叶节点存放一个类标号。一旦建立好了决策树。对于一个未给定类标号的元组,跟踪一条有根节点到叶节点的路径,该叶节点就存放着该元组的预測。决策树的优势在于不须要不论什么领域知识或參数设置。适合于探測性的知识发现。
从ID3算法中衍生出了C4.5和CART两种算法。这两种算法在数据挖掘中都很重要。下图就是一棵典型的C4.5算法对数据集产生的决策树。
数据集如图1所看到的。它表示的是天气情况与去不去打高尔夫球之间的关系。

图1 数据集

图2 在数据集上通过C4.5生成的决策树
算法描写叙述
C4.5并不一个算法,而是一组算法—C4.5,非剪枝C4.5和C4.5规则。下图中的算法将给出C4.5的基本工作流程:

图3 C4.5算法流程
我们可能有疑问,一个元组本身有非常多属性,我们怎么知道首先要对哪个属性进行推断,接下来要对哪个属性进行推断?换句话说,在图2中,我们怎么知道第一个要測试的属性是Outlook,而不是Windy?事实上,能回答这些问题的一个概念就是属性选择度量。
属性选择度量
属性选择度量又称分裂规则,由于它们决定给定节点上的元组怎样分裂。属性选择度量提供了每一个属性描写叙述给定训练元组的秩评定。具有最好度量得分的属性被选作给定元组的分裂属性。眼下比較流行的属性选择度量有--信息增益、增益率和Gini指标。
先做一些如果,设D是类标记元组训练集,类标号属性具有m个不同值,m个不同类Ci(i=1,2,…,m),CiD是D中Ci类的元组的集合,|D|和|CiD|各自是D和CiD中的元组个数。
(1)信息增益
信息增益实际上是ID3算法中用来进行属性选择度量的。它选择具有最高信息增益的属性来作为节点N的分裂属性。该属性使结果划分中的元组分类所需信息量最小。对D中的元组分类所需的期望信息为下式:
(1)
Info(D)又称为熵。
如今假定依照属性A划分D中的元组,且属性A将D划分成v个不同的类。
在该划分之后,为了得到准确的分类还须要的信息由以下的式子度量:
(2)
信息增益定义为原来的信息需求(即仅基于类比例)与新需求(即对A划分之后得到的)之间的差。即
(3)
我想非常多人看到这个地方都认为不是非常好理解,所以我自己的研究了文献中关于这一块的描写叙述,也对照了上面的三个公式。以下说说我自己的理解。
一般说来。对于一个具有多个属性的元组,用一个属性就将它们全然分开差点儿不可能,否则的话。决策树的深度就仅仅能是2了。从这里能够看出,一旦我们选择一个属性A,如果将元组分成了两个部分A1和A2,因为A1和A2还能够用其他属性接着再分,所以又引出一个新的问题:接下来我们要选择哪个属性来分类?对D中元组分类所需的期望信息是Info(D)
,那么同理,当我们通过A将D划分成v个子集Dj(j=1,2,…,v)之后。我们要对Dj的元组进行分类,须要的期望信息就是Info(Dj),而一共同拥有v个类。所以对v个集合再分类,须要的信息就是公式(2)了。由此可知,假设公式(2)越小,是不是意味着我们接下来对A分出来的几个集合再进行分类所须要的信息就越小?而对于给定的训练集,实际上Info(D)已经固定了,所以选择信息增益最大的属性作为分裂点。
可是。使用信息增益的话事实上是有一个缺点,那就是它偏向于具有大量值的属性。
什么意思呢?就是说在训练集中。某个属性所取的不同值的个数越多。那么越有可能拿它来作为分裂属性。
比如一个训练集中有10个元组,对于某一个属相A,它分别取1-10这十个数,假设对A进行分裂将会分成10个类。那么对于每个类Info(Dj)=0,从而式(2)为0,该属性划分所得到的信息增益(3)最大,可是非常显然,这样的划分没有意义。
(2)信息增益率
正是基于此,ID3后面的C4.5採用了信息增益率这样一个概念。信息增益率使用“分裂信息”值将信息增益规范化。分类信息类似于Info(D),定义例如以下:
(4)
这个值表示通过将训练数据集D划分成相应于属性A測试的v个输出的v个划分产生的信息。信息增益率定义:
(5)
选择具有最大增益率的属性作为分裂属性。
二、算法说明
(1)我们是要构造一个决策树。非常自然地,树的每一层代表一个属性的取值,最后的叶子节点指向划分的类。
如图二所看到的。
(2)因此非常自然的问题就是怎样在每一层选择合适的节点去构造这个树使这个树的结构尽可能最优,也就是查找路径尽可能的短。
(3)因此最关键的问题就是怎样在每一层,从剩下的还没被分配的节点中找出最合适的分裂节点。
(4)当中ID3算法选择最优节点的方式是:选出信息增益增益最高的属性。信息增益能够简单理解成使用某个属性划分后,不确定性的降低量。
(5)而C4.5算法做了一个改进。使用信息增益率最高的属性,这样做的优点是,能够避免树过宽。
(6)构建好了树之后还要进行一些剪枝的操作,当然这个不体如今算法主流行里。也没有做强求。但能够注意一下Weka是怎样实现的。
三、算法中用到的主要数据结构
(1)Instances对象
一个Instances代表一张表。能够相应一个arff文件或者是一个csv文件,通过Instances对象能够取某一列的均值方差等,主要就是若干行记录的一个封装。
(2)Instance
一个Instance代表一行记录。换言之中的一个个Instances的数据包括多个Instance。每一个Instance会有一个特殊的列ClassIndex,该列值代表该Instance属于哪一类。详细来说就是图一里面的Golf。
(3)Classifier接口
Weka中每个分类器都继承与这个接口(尽管从意义上来说是个接口但事实上是个子类)。该接口提供一个buildClassifier方法传入一个Instances对象用于训练。还有classifyInstance方法用于传入一个Instance来推断其属于哪个类。
(4)J48
分类器主类,实现了Classifier接口。
(5)ClassifierTree接口
代表树中的一个节点。维护和组成树的结构。当中J48用到的是C45PruneableClassifierTree和PruneableClassifierTree。
(6)ModelSelection接口
该接口负责推断和选取最优的属性。然后依据该属性将不同的Instance放到不同的subset中,ClassifierTree接口使用ModelSelection来生成树的结构。
这样的抽象方式还是非常值得学习的。J48中用到的该接口的实现有BinC45ModelSelection和C45ModelSelection,通过名字大概也能看出来前一个是生成二叉树(即每一个节点仅仅含有是否两种回答)。后一个是生成标准的C45树。
未完待续。。
。。。
。
版权声明:本文博客原创文章,博客,未经同意,不得转载。
Weka算法Classifier-tree-J48源代码分析(一个)基本数据结构和算法的更多相关文章
- MPQ Storm库 源代码分析 一个
MPQ什么? MPQ维基上说的非常明确. 简而言之,它是暴雪公司用于游戏数据打包的工具.星际争霸,魔兽争霸游戏中都有使用.该工具内含游戏资源加密和压缩等功能. git下载地址:http ...
- 【E2LSH源代码分析】p稳定分布LSH算法初探
上一节,我们分析了LSH算法的通用框架,主要是建立索引结构和查询近似近期邻.这一小节,我们从p稳定分布LSH(p-Stable LSH)入手,逐渐深入学习LSH的精髓,进而灵活应用到解决大规模数据的检 ...
- 每周一练 之 数据结构与算法(Tree)
这是第六周的练习题,最近加班比较多,上周主要完成一篇 GraphQL入门教程 ,有兴趣的小伙伴可以看下哈. 下面是之前分享的链接: 1.每周一练 之 数据结构与算法(Stack) 2.每周一练 之 数 ...
- JavaScript 数据结构与算法之美 - 十大经典排序算法汇总(图文并茂)
1. 前言 算法为王. 想学好前端,先练好内功,内功不行,就算招式练的再花哨,终究成不了高手:只有内功深厚者,前端之路才会走得更远. 笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 ...
- 数据结构和算法(Golang实现)(27)查找算法-二叉查找树
二叉查找树 二叉查找树,又叫二叉排序树,二叉搜索树,是一种有特定规则的二叉树,定义如下: 它是一颗二叉树,或者是空树. 左子树所有节点的值都小于它的根节点,右子树所有节点的值都大于它的根节点. 左右子 ...
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...
- 为什么我要放弃javaScript数据结构与算法(第十章)—— 排序和搜索算法
本章将会学习最常见的排序和搜索算法,如冒泡排序.选择排序.插入排序.归并排序.快速排序和堆排序,以及顺序排序和二叉搜索算法. 第十章 排序和搜索算法 排序算法 我们会从一个最慢的开始,接着是一些性能好 ...
- 每周一练 之 数据结构与算法(Dictionary 和 HashTable)
这是第五周的练习题,上周忘记发啦,这周是复习 Dictionary 和 HashTable. 下面是之前分享的链接: 1.每周一练 之 数据结构与算法(Stack) 2.每周一练 之 数据结构与算法( ...
- 《数据结构与算法之美》 <03>数组:为什么很多编程语言中数组都从0开始编号?
提到数组,我想你肯定不陌生,甚至还会自信地说,它很简单啊. 是的,在每一种编程语言中,基本都会有数组这种数据类型.不过,它不仅仅是一种编程语言中的数据类型,还是一种最基础的数据结构.尽管数组看起来非常 ...
- 数据结构和算法(Golang实现)(25)排序算法-快速排序
快速排序 快速排序是一种分治策略的排序算法,是由英国计算机科学家Tony Hoare发明的, 该算法被发布在1961年的Communications of the ACM 国际计算机学会月刊. 注:A ...
随机推荐
- FMDB简单使用
1.增删改查://注意:dataWithPath中的路径参数一般会选择保存到沙箱中的Documents目录中: //如果这个参数设置为nil则数据库会在内存中创建: //如果设置为@””则会在沙箱中的 ...
- 20SpringMvc_结果的转发可共享参数;重定向不能共享参数
Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE MicrosoftInternetExplorer4 /* Style Definiti ...
- 思科简单教程CCNA
这是CCNA的内容,从PC配置交换机(或者路由器),这里呢我们使用的软件叫pack 这是ciso开发的一款工具,能生动形象的模拟现实生活中组网技术的过程,下面我大概讲一下流程,想更多的了解我会录制一些 ...
- [tomcat7源码学习]初始化之catalina.home和catalina.base(转)
我们在代码中为了获取某个配置文件路径下的文件经常会这么写 String tomcatPath = System.getProperty("catalina.home") + &qu ...
- Fragment中监听onKey事件,没你想象的那么难。
项目中越来越多的用到Fragment,在用Fragment取代TabHost的时候遇到了一个问题,我们都知道,TabHost的Tab为Activity实例,有OnKey事件,但是Fragment中没有 ...
- findstr()与strfind()的区别
matlab中这两个字符串查找的函数findstr(), strfind()表明上看起来用法相似,效果也相似. 1. findstr(s1,s2)--在较长的字符串中查找较短的字符串出现的次数,并返回 ...
- Java Web利用POI导出Excel简单例子
采用Spring mvc架构: Controller层代码如下 @Controller public class StudentExportController{ @Autowired private ...
- 让PowerShell用上Git
废话 废话一下为什么要在PowerShell上使用Git,有一些项目在公司要开发,回到家了忽然有灵感想要写一写,这个时候将代码托管到网上是最为方便,我所使用的开发工具是vs2013,自然而然想到使用T ...
- coreData,sqlite3,fmdb对比
core data core data 基于model-view-controller(mvc)模式下,为创建分解的cocoa应用程序提供了一个灵活和强大的数据模型框架. core data可 ...
- 记录我学github的路程(二)
2015-12-09 更新 1,现在,本地有了一个库,你可能会想到GitHub创建一个库,并且关联起来.这样,远程的库既可以当作备份,又可以让其他人通过该仓库来协作. 2,步骤: (1)登录GitHu ...