Visualize real-time data streams with Gnuplot
(September 2008)
For the last couple of years, I've been working on European Space Agency (ESA) projects - writing rather complex code generators. In the ESA project I am currently working on, I am also the technical lead; and I recently faced the need to (quickly) provide real-time plotting of streaming data. Being a firm believer in open-source, after a little Googling I found Gnuplot. From my (somewhat limited) viewpoint, Gnuplot appears to be the LaTEX equivalent in the world of graphs: amazing functionality that is also easily accessible. Equally important, Gnuplot follows the powerful paradigm that UNIX established: it comes with an easy to use scripting language, thus allowing its users to prescribe actions and "glue" Gnuplot together with other applications - and form powerful combinations.
To that end, I humbly submit a little creation of mine: a Perl script that spawns instances of Gnuplot and plots streaming data in real-time.

Plotting data in real-time
Interfacing over standard input
My coding experience has taught me to strive for minimal and complete interfaces: to that end, the script plots data that will arrive over the standard input, one sample per line. The samples are just numbers (integers / floating point numbers), and must be prefixed with the stream number ("0:", "1:", etc). Each plot window will also be configured to display a specific number of samples.
The resulting script is relatively simple - and easy to use:
bash ./driveGnuPlots.pl Usage: ./driveGnuPlots.pl <options>
where options are (in order): NumberOfStreams How many streams to plot (windows)
Stream1_WindowSampleSize <Stream2...> This many window samples for each stream
Stream1_Title <Stream2_Title> ... Title used for each stream
(Optional) Stream1_geometry <...>. Sizes and positions in pixels The last parameters (the optionally provided geometries of the gnuplot windows)
are of the form:
WIDTHxHEIGHT+XOFF+YOFF
Note that the script uses the "autoscale" feature of GnuPlot, to automatically adapt to the incoming value ranges.
An example usage scenario: plotting sine and cosine
Let's say we want to see a sine and a cosine run side-by-side, in real-time. We also want to watch the cosine "zooming-in" by 10x (time-scale wise). The following code will print our test samples:
#!/usr/bin/perl -w
use strict; use Time::HiRes qw/sleep/; # First, set the standard output to auto-flush
select((select(STDOUT), $| = 1)[0]); # And loop 5000 times, printing values...
my $offset = 0.0;
while(1) {
print "0:".sin($offset)."\n";
print "1:".cos($offset)."\n";
$offset += 0.1;
if ($offset > 500) {
last;
}
sleep(0.02);
}
We'll use this code to test our plotting script: the data for two streams (sine and cosine) are printed in the expected format: one sample (one number) printed per line. To distinguish between the two streams, the sample is prefixed with "0:", "1:", etc. Notice that we explicitly set the autoflush flag for our standard output: we need the data output to be unbuffered, otherwise our plotting script will receive data in bursts (when the data are flushed from the producer), and the plots will "jerk" forward.
This is how we test the plotting script (assuming we saved the sample code above in sinuses.pl): <
bash$ ./sinuses.pl | ./driveGnuPlots.pl 2 50 500 "Sine" "Cosine"
To stop the plotting, use Ctrl-C on the terminal you spawned from.
The parameters we passed to driveGnuPlots.pl are:
- 2 is the number of streams
- The window for the first stream (sine) will be 50 samples wide
- The window for the second stream (cosine) will be 500 samples wide (hence the different "zoom" factor)
- The titles of the two streams follow
When executed, the script spawns one gnuplot per each stream, and displays the graphs in a clear, flicker-free manner. If you don't like the Gnuplot settings I used (e.g. the grid, or the colors, or...) feel free to change them: the setup code that defines the plotting parameters starts at line 82 of the script.
Executive summary: plotting streaming data is now as simple as selecting them out from your "producer" program (filtering its standard output through any means you wish: grep, sed, awk, etc), and outputing them, one number per line. Just remember to prefix with the stream number ("0:", "1:", etc, to allow for multiple streams), and make sure you flush your standard output, e.g.
For this kind of output: bash$ /path/to/programName
...(other stuff)
Measure: 7987.3
...(other stuff)
Measure: 8364.4
Measure: 8128.1
... You would do this: bash$ /path/to/programName | \
grep --line-buffered '^Measure:' | \
awk -F: '{printf("0:%f\n", $2); fflush();}' | \
driveGnuPlots.pl 1 50 "My data"
In the code above, grep filters out the lines that start with "Measure:", and awk selects the 2nd column ($2) and prefixes it with "0:" (since this is the 1st - and only, in this example - stream we will display). Notice that we used the proper options to force the standard output's flushing for both grep (--line-buffered) and awk (fflush() called).
Preparing for a demo
You don't want to move the GnuPlot windows after they are shown, do you? So you can just specify their placement, in "WIDTHxHEIGHT+XOFF+YOFF" format (in pixels):
bash$ ./sinus.pl | ./driveGnuPlots.pl 2 50 50 Sinus Cosinus 512x384+0+0 512x384+512+0
The provisioning of titles and GnuPlot window placement information, makes the script very well-suited for live demonstrations.
P.S. UNIX power in all its glory: it took me 30min to code this, and another 30 to debug it. Using pipes to spawned copies of gnuplots, we are able to do something that would require one or maybe two orders of magnitude more effort in any conventional programming language (yes, even accounting for custom graph libraries - you do have to learn their API and do your windows/interface handling...)
Visualize real-time data streams with Gnuplot的更多相关文章
- FunDA(9)- Stream Source:reactive data streams
上篇我们讨论了静态数据源(Static Source, snapshot).这种方式只能在预知数据规模有限的情况下使用,对于超大型的数据库表也可以说是不安全的资源使用方式.Slick3.x已经增加了支 ...
- NTFS格式下的Alternate Data Streams
今天我写点NTFS的交换数据流以及其带来的安全问题(Alternate Data Stream/ADS) =============================================== ...
- Awesome Big Data List
https://github.com/onurakpolat/awesome-bigdata A curated list of awesome big data frameworks, resour ...
- 翻译-In-Stream Big Data Processing 流式大数据处理
相当长一段时间以来,大数据社区已经普遍认识到了批量数据处理的不足.很多应用都对实时查询和流式处理产生了迫切需求.最近几年,在这个理念的推动下,催生出了一系列解决方案,Twitter Storm,Yah ...
- Exploring the 7 Different Types of Data Stories
Exploring the 7 Different Types of Data Stories What makes a story truly data-driven? For one, the n ...
- The difference between text mode and binary mode with file streams
FIO14-C. Understand the difference between text mode and binary mode with file streams Skip to e ...
- THE R QGRAPH PACKAGE: USING R TO VISUALIZE COMPLEX RELATIONSHIPS AMONG VARIABLES IN A LARGE DATASET, PART ONE
The R qgraph Package: Using R to Visualize Complex Relationships Among Variables in a Large Dataset, ...
- Flink应用案例:How Trackunit leverages Flink to process real-time data from industrial IoT devices
January 22, 2019Use Cases, Apache Flink Lasse Nedergaard Recently there has been significant dis ...
- explore your hadoop data and get real-time results
deep api integration makes getting value from your big data easy 深度api集成使你大数据訪问更加easy Elasticsearch ...
随机推荐
- MVC中视图View向控制器传值的方法
MVC中视图View向控制器传值的方法步骤如下: 1.index页面: 页面中只需要一个触发事件的按钮
- sql 去重
;WITH CETAS (SELECT *, ROW_NUMBER() OVER (PARTITION BY SearchTask_PKID ORDER BY SearchTask_PKID) Row ...
- POJ 3761 Bubble Sort 快速幂取模+组合数学
转载于:http://www.cnblogs.com/767355675hutaishi/p/3873770.html 题目大意:众所周知冒泡排序算法多数情况下不能只扫描一遍就结束排序,而是要扫描好几 ...
- NoSuchMethodException <init>()
1. Question Description: SEVERE: Servlet.service() for servlet [dispatcher] in context with path [/n ...
- pbfunc外部函数扩展应用-在Powerbuilder中进行Http的GET、POST操作
利用PBFunc扩展函数进行Http的操作时,需要对n_pbfunc_http的以下几个函数进行参数设置: of_set_URL(...)//要进行GET或POST的url,必须 of_set_Con ...
- C#中的索引器原理
朋友们,还记得我们在C#语言开发中用到过索引器吗? 记得在获得DataGridView控件的某列值时:dgvlist.SelectedRows[0].Cells[0].Value; 记得在获得List ...
- ubuntu定时执行脚本(crond)
如果发现您的系统里没有这个命令,请安装下面两个软件包. vixie-cron crontabs crontab 是用来让使用者在固定时间或固定间隔执行程序之用,换句话说,也就是类似使用者的时程表.-u ...
- JavaScript强化教程——Cocos2d-JS中JavaScript继承
javaScript语言本身没有提供类,没有其它语言的类继承机制,它的继承是通过对象的原型实现的,但这不能满足Cocos2d-JS引擎的要求.由于Cocos2d-JS引擎是从Cocos2d-x演变而来 ...
- 软件快速开发平台 JEPF
JEPF新一代软件快速开发平台(Java Elephant Platform)是一款优秀的平台产品,它本着灵活.快捷开发.高性能.高协作性.高稳定性.高可用性.人性化的操作体验为设计宗旨历经2年研发成 ...
- 编译hadoop eclipse的插件(hadoop1.0)
原创文章,转载请注明: 转载自工学1号馆 欢迎关注我的个人博客:www.wuyudong.com, 更多云计算与大数据的精彩文章 在hadoop-1.0中,不像0.20.2版本,有现成的eclipse ...