博客:blog.shinelee.me | 博客园 | CSDN

写在前面

本文重点在于回顾深度神经网络在CV领域的First Blood——AlexNet,AlexNet是首个在大规模图像识别问题取得突破性进展的深度神经网络,相比基于SIFT+FVs、稀疏编码的传统方法,性能提升了10多个百分点(error rate 26.2% → 15.3%,ILSVRC-2012),并由此开启了深度神经网络血洗CV各领域的开端,如下图所示(SuperVision即AlexNet)。

截止本文时间2019年9月2日,AlexNet论文的引用量达45305,论文作者Alex Krizhevsky、Ilya Sutskever和“深度学习之父”Geoff Hinton。

网络结构

AlexNet的原始网络结构如下,可以参见caffe的网络定义bvlc_alexnet,pytorch等也给出了变种实现,见torchvision/models/alexnet.py

整个网络大体由5个卷积层和3个全连接层组成,受限于当时的计算资源,网络通过2块GTX580 3GB的GPU训练,上图可见,整个网络上下一分为二,各用1块GPU训练(在caffe中通过group层实现),每个GPU放一半的神经元,网络中第3个卷积层和3个全连接层跨GPU连接。与使用单个GPU和50%神经元的网络相比,这个双GPU方案的Top1和Top5错误率分别降低了1.7%和1.2%。

每层的配置如下,第一个卷积层的kernel size为11,stride为4:

创新点

为了获得最佳表现,论文中综合应用了很多技术,有些后来已成为通用的标准做法。

  • 使用ReLU作为激活函数,作为non-saturating非线性激活函数有效避免了梯度消失问题,同时与tanh(saturating非线性激活函数)相比,训练速度提升了数倍(CIFAR-10上训练达到25%错误率速度快了6倍)。

  • 多GPU训练,实际上相当于增加了网络的宽度,如上节所述,Top1和Top5错误率比单GPU网络分别降低了1.7%和1.2%。

  • 提出了LRN(Local Response Normalization)层,使用相邻\(n\)个特征图上同位置的值对当前值进行归一化,公式如下。LRN被认为没有太大效果,已不被后来者采用。
    \[
    b_{x, y}^{i}=a_{x, y}^{i} /\left(k+\alpha \sum_{j=\max (0, i-n / 2)}^{\min (N-1, i+n / 2)}\left(a_{x, y}^{j}\right)^{2}\right)^{\beta}
    \]

  • 使用Overlapping Max-Pooling,如上节图中,Pooling层的kernel size \(z=3\),stride \(s=2\),\(z > s\),与\(s=z=2\)相比,Top1和Top5错误率分别下降了0.4%和0.3%。

  • 通过Data Augmentation数据增广降低过拟合,提高预测准确度

    • 训练阶段,通过生成大量训练数据来降低过拟合,生成数据的方式有2种,

      • 第1种方式从\(256\times 256\)图像中随机裁剪+左右翻转出\(224\times 224\)的图像,将训练数据扩大了2048倍;
      • 第2种方式对每张训练图像RGB通道做数值扰动,扰动量通过对整个训练集的RGB像素进行PCA获得,扰动量为\(\left[\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}\right]\left[\alpha_{1} \lambda_{1}, \alpha_{2} \lambda_{2}, \alpha_{3} \lambda_{3}\right]^{T}\),\(\mathbf{P}_{i}\)和 \(\lambda_{i}\)为RGB像素协方差矩阵的特征向量和特征值,\(\alpha_{i}\)为0均值0.1标准差的高斯随机值。
    • 预测阶段,从待预测\(256\times 256\)图中上下左右中间crop+左右翻转得到10张\(224\times 224\)的图像,逐一输入网,络对输出结果取平均,来提升预测阶段的准确率,相当于数据层面的集成学习
  • 对前2个全连接层使用Dropout技术,训练时每次随机让50%的神经元输出为0,以此来降低过拟合,预测时将权重乘以0.5。这样可以强迫网络学习到更鲁棒的特征,也可以从集成学习的视角理解,预测阶段相当于对随机到的所有模型求了个期望。

  • batchsize 128,SGD Momentum 0.9,weight decay 0.0005,initial learning rate 0.01 停滞时divide by 10,

\[
\begin{aligned} v_{i+1} & :=0.9 \cdot v_{i}-0.0005 \cdot \epsilon \cdot w_{i}-\epsilon \cdot\left\langle\left.\frac{\partial L}{\partial w}\right|_{w_{i}}\right\rangle_{D_{i}} \\ w_{i+1} & :=w_{i}+v_{i+1} \end{aligned}
\]

其他有意思的点

回顾AlexNet论文,发现论文中提及了很多有意思的点,有些仅仅是一笔带过,但是可能启发了后面大量的工作,翻回来看才发现“祖师爷”早有预兆。

  • finetune,在一个库上训练,在另一个库上finetune

  • 权重可视化,仅可视化第1个卷积层的96个卷积核权重,发现网络学到了频率方向性的特征,更有意思的是,GPU1上的48个卷积核是颜色无关的,GPU2上的是颜色相关的。

  • 匹配与检索,使用最后一个全连接层的输出作为特征,通过欧氏距离可计算图像间的特征相似度,可做匹配,提出可以通过auto-encoder进一步压缩获取到short binary code,可用于检索,如下图所示,检索与最左边一列特征最近的图像

  • 深度十分重要,增加深度可以进一步提升性能,当前性能只是受限于计算资源和训练时间(微笑)

  • 在ILSVRC 2012上做的报告展示了使用AlexNet做detection的结果,如下

不愧是开创性工作的paper,给这含金量跪了。

参考

从AlexNet(2012)开始的更多相关文章

  1. AlexNet 2012

    AlexNet             Alexnet是一年一度的ImageNet大型视觉识别挑战赛(ILSVRC)2012年冠军,ILSVRC使用ImageNet的一个子集,分为1000种类别,每种 ...

  2. 学习笔记TF030:实现AlexNet

    ILSVRC(ImageNet Large Scale Visual Recognition Challenge)分类比赛.AlexNet 2012年冠军(top-5错误率16.4%,额外数据15.3 ...

  3. TensorFlow实战之实现AlexNet经典卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...

  4. CNN Architectures(AlexNet,VGG,GoogleNet,ResNet,DenseNet)

    AlexNet (2012) The network had a very similar architecture as LeNet by Yann LeCun et al but was deep ...

  5. 深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中 ...

  6. 图像分类丨ILSVRC历届冠军网络「从AlexNet到SENet」

    前言 深度卷积网络极大地推进深度学习各领域的发展,ILSVRC作为最具影响力的竞赛功不可没,促使了许多经典工作.我梳理了ILSVRC分类任务的各届冠军和亚军网络,简单介绍了它们的核心思想.网络架构及其 ...

  7. CNN-2: AlexNet 卷积神经网络模型

    1.AlexNet 模型简介 由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大 ...

  8. (转)The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know Abo ...

  9. ImageNet && 医学图像的识别

    医学图像识别的问题 如果将CNN应用于医学图像,首要面对的问题是训练数据的缺乏.因为CNN的训练数据都需要有类别标号,这通常需要专家来手工标记.要是标记像ImageNet这样大规模的上百万张的训练图像 ...

随机推荐

  1. 【翻译】Orleans 3.0 发布

    aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAYEBQYFBAYGBQYHBwYIChAKCgkJChQODwwQFxQYGBcUF ...

  2. k8s Ingress 理解和部署

    目录 前言 Ingress 与 ingress-controller Ingress 部署 1.部署 ingress-controller 2.部署测试 web 服务 3.部署 Ingress 4.检 ...

  3. Python文件和数据格式化(教程)

    文件是一个存储在副主存储器的数据序列,可包含任何数据内容. 概念上,文件是数据的集合和抽象,类似的,函数是程序的集合和抽象. 用文件形式组织和表达数据更有效也更加灵活. 文件包括两种形式,文本文件和二 ...

  4. at、crontab、anacron的基本使用

    Linux的任务调度机制主要分为两种: 1. 执行一次:将在某个特定的时间执行的任务调度 at 2. 执行多次: crontab 3.关机后恢复尚未执行的程序 anacron. ①at at命令用于在 ...

  5. 第一次c语言作业。

    第一次c语言作业 作业1 2.1 你对软件工程专业或者计算机科学与技术专业了解是怎样? 我认为计算机科学与技术是研究信息过程.用以表达此过程的信息结构和规则及其在信息处理系统中实现的学科.这门学科是为 ...

  6. KNN学习笔记

    简单地说,KNN算法就是通过测量不同特征值之间的距离来对特征进行分类的一种算法. 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型. 工 ...

  7. 在ubuntu18.04中安装opencv_contrib-3.2.0采坑教程

    由于最近要在OpenCV3中使用SIFT和SURF特征提取,而自从OpenCV2升级到OpenCV3版本后,SIFT.SURF等这些算法都被移出opencv默认项目库,而被放到叫opencv_cont ...

  8. 新一代数据安全的制胜法宝-UBA

    [摘要]在入侵防御领域,运用数据分析的方法保护数据的技术其实没有什么新的东西,比如防火墙-分析数据包的内容以及其他的元数据,如IP地址,从增长的数据条目中检测和阻断攻击者:防病毒软件不断的扫描文件系统 ...

  9. 【跟唐老师学习云网络】-第8篇 iptables - filter过滤功能

    [摘要] 前面的各种协议已经可以把基本可用的物理网络世界给形成了,在正常情况下,它可以玩的很溜.比如组个局域网办公,或者打个联机魔兽争霸,都没有什么问题. 一.背景介绍 前面的各种协议已经可以把基本可 ...

  10. Python之HTTP静态Web服务器开发

    众所周知,Http协议是基于Tcp协议的基础上产生的浏览器到服务器的通信协议 ,其根本原理也是通过socket进行通信. 使用HTTP协议通信,需要注意其返回的响应报文格式不能有任何问题. 响应报文, ...