『题解』Codeforces1142A The Beatles
Portal
Portal1: Codeforces
Portal2: Luogu
Description
Recently a Golden Circle of Beetlovers was found in Byteland. It is a circle route going through \(n \cdot k\) cities. The cities are numerated from \(1\) to \(n \cdot k\), the distance between the neighboring cities is exactly \(1\) km.
Sergey does not like beetles, he loves burgers. Fortunately for him, there are \(n\) fast food restaurants on the circle, they are located in the \(1\)-st, the \((k + 1)\)-st, the \((2k + 1)\)-st, and so on, the \(((n-1)k + 1)\)-st cities, i.e. the distance between the neighboring cities with fast food restaurants is \(k\) km.
Sergey began his journey at some city \(s\) and traveled along the circle, making stops at cities each \(l\) km (\(l > 0\)), until he stopped in \(s\) once again. Sergey then forgot numbers \(s\) and \(l\), but he remembers that the distance from the city \(s\) to the nearest fast food restaurant was \(a\) km, and the distance from the city he stopped at after traveling the first \(l\) km from \(s\) to the nearest fast food restaurant was \(b\) km. Sergey always traveled in the same direction along the circle, but when he calculated distances to the restaurants, he considered both directions.
Now Sergey is interested in two integers. The first integer \(x\) is the minimum number of stops (excluding the first) Sergey could have done before returning to \(s\). The second integer \(y\) is the maximum number of stops (excluding the first) Sergey could have done before returning to \(s\).
Input
The first line contains two integers \(n\) and \(k\) (\(1 \le n, k \le 100\,000\)) — the number of fast food restaurants on the circle and the distance between the neighboring restaurants, respectively.
The second line contains two integers \(a\) and \(b\) (\(0 \le a, b \le \frac{k}{2}\)) — the distances to the nearest fast food restaurants from the initial city and from the city Sergey made the first stop at, respectively.
Output
Print the two integers \(x\) and \(y\).
Sample Input1
2 3
1 1
Sample Output1
1 6
Sample Input2
3 2
0 0
Sample Output2
1 3
Sample Input3
1 10
5 3
Sample Output3
5 5
Hint
In the first example the restaurants are located in the cities \(1\) and \(4\), the initial city \(s\) could be \(2\), \(3\), \(5\), or \(6\). The next city Sergey stopped at could also be at cities \(2, 3, 5, 6\). Let's loop through all possible combinations of these cities. If both \(s\) and the city of the first stop are at the city \(2\) (for example, \(l = 6\)), then Sergey is at \(s\) after the first stop already, so \(x = 1\). In other pairs Sergey needs \(1, 2, 3\), or \(6\) stops to return to \(s\), so \(y = 6\).
In the second example Sergey was at cities with fast food restaurant both initially and after the first stop, so \(l\) is \(2\), \(4\), or \(6\). Thus \(x = 1\), \(y = 3\).
In the third example there is only one restaurant, so the possible locations of \(s\) and the first stop are: \((6, 8)\) and \((6, 4)\). For the first option \(l = 2\), for the second \(l = 8\). In both cases Sergey needs \(x=y=5\) stops to go to \(s\).
Solution
我们根据题目的\(a, b, k\)计算出\(l\)的\(4\)种可能:
\(a + b\)
\(k - a + b\)
\(k + a - b\)
\(k - a - b\)
每走一步的答案就是\(\frac{n \times k}{\gcd(n \times k, step)}\)。
然后枚举找个最大的与最小的就可以了。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
const LL INF = 1e18;
LL n, k, a, b, step;
int main() {
scanf("%lld%lld%lld%lld", &n, &k, &a, &b);
LL Max = -INF, Min = INF;
step = fabs(a + b);//第1种情况
while (step <= n * k) {//枚举步数
if (step) {
Max = max(Max, n * k / __gcd(n * k, step));
Min = min(Min, n * k / __gcd(n * k, step));
}
step += k;
}
step = fabs(k - a + b);//第2种情况
while (step <= n * k) {//枚举步数
if (step) {
Max = max(Max, n * k / __gcd(n * k, step));
Min = min(Min, n * k / __gcd(n * k, step));
}
step += k;
}
step = fabs(k - b + a);//第3种情况
while (step <= n * k) {//枚举步数
if (step) {
Max = max(Max, n * k / __gcd(n * k, step));
Min = min(Min, n * k / __gcd(n * k, step));
}
step += k;
}
step = fabs(k - a - b);//第4种情况
while (step <= n * k) {//枚举步数
if (step) {
Max = max(Max, n * k / __gcd(n * k, step));
Min = min(Min, n * k / __gcd(n * k, step));
}
step += k;
}
printf("%lld %lld\n", Min, Max);
return 0;
}
『题解』Codeforces1142A The Beatles的更多相关文章
- 『题解』洛谷P1063 能量项链
原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...
- 『题解』Codeforces1142B Lynyrd Skynyrd
更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Recently Lynyrd and Skynyrd went to a ...
- 『题解』洛谷P1993 小K的农场
更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...
- 『题解』洛谷P2296 寻找道路
更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 在有向图\(\mathrm G\)中,每条边的长度均为\(1\),现给定起点和终点 ...
- 『题解』洛谷P1351 联合权值
更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...
- 『题解』Codeforces656E Out of Controls
更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description You are given a complete undirected gr ...
- 『题解』洛谷P2170 选学霸
更好的阅读体验 Portal Portal1: Luogu Description 老师想从\(N\)名学生中选\(M\)人当学霸,但有\(K\)对人实力相当,如果实力相当的人中,一部分被选上,另一部 ...
- 『题解』洛谷P1083 借教室
更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Portal3: Vijos Description 在大学期间,经常需要租借教室.大到院系举办活动,小到 ...
- 『题解』Codeforces9D How many trees?
更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description In one very old text file there was wr ...
随机推荐
- 05-04 scikit-learn库之主成分分析
目录 scikit-learn库之主成分分析 一.PCA 1.1 使用场景 1.2 代码 1.3 参数 1.4 属性 1.5 方法 二.KernelPCA 三.IncrementalPCA 四.Spa ...
- 网页布局——Box盒子
在移动端开发的时候,圣杯布局,弹性盒,是我们经常会用得到的,W3C很久以前就有一个display:box属性 flex是最新的,但是在实际的浏览器测试中,display: flex 不能完全替代dis ...
- deferred对象和promise对象(一)
个人认为阮一峰老师讲的关于deferred对象是最容易理解的. deferred对象是jquery的回调函数解决方案.解决了如何处理耗时操作的问题,对那些操作提供了更好的控制,以及统一的编程接口. d ...
- e课表项目第二次冲刺周期第一天
昨天干了什么? 昨天与我们小组的成员商量了一个重大的决定,由于我们第一次冲刺周期的成果,就是我们决定我们要转型发展. 今天干了什么? 查阅相关的资料,我们正式决定要做一款学习的课程表APP,把简易作为 ...
- web开发基础之HTTP协议
HTTP协议 HTTP协议简介 超文本传输协议(英文:HyperText Transfer Protocol,缩写:HTTP)是一种用于分布式.协作式和超媒体信息系统的应用层协议.HTTP是万维网的数 ...
- Spring源码分析(一)预备篇=》基本知识储备
一.Spring框架整体,各个部分 .Spring Core Container Core 和 Beans 模块是框架的基础部分,提供 IoC (控制反转)和依赖注入特性. 这里的基础 概念是 Bea ...
- Ubuntu安装NASM和简单的使用教程
1. 安装 sudo apt-get install nasm 这样nasm就安装好了,终端输入命令: nasm -version 输出版本信息就说明安装成功 2. 使用 创建"hello. ...
- 利用window10的Linux子系统实现docker的安装使用
先参照 此博客 点这里 我在执行 apt installdocker.io 命令时,不能正确的安装 docker client 所以我找了下面的命令,然后执行 docker version 成功了 辅 ...
- ajax 轮询(适合web端二维码请求)
(前几天 一直弄二维码轮询登录 想了半天 总算弄出来了 分享给大家 ^-^) 轮询: 所谓轮询 肯定需要 setInterval 但是怎么加ajax请求 需要有点小问题而且轮询成功后需要停 ...
- Spring Boot 2.X(十一):全局异常处理
前言 在 Java Web 系统开发中,不管是 Controller 层.Service 层还是 Dao 层,都有可能抛出异常.如果在每个方法中加上各种 try catch 的异常处理代码,那样会使代 ...