『题解』Codeforces1142A The Beatles
Portal
Portal1: Codeforces
Portal2: Luogu
Description
Recently a Golden Circle of Beetlovers was found in Byteland. It is a circle route going through \(n \cdot k\) cities. The cities are numerated from \(1\) to \(n \cdot k\), the distance between the neighboring cities is exactly \(1\) km.
Sergey does not like beetles, he loves burgers. Fortunately for him, there are \(n\) fast food restaurants on the circle, they are located in the \(1\)-st, the \((k + 1)\)-st, the \((2k + 1)\)-st, and so on, the \(((n-1)k + 1)\)-st cities, i.e. the distance between the neighboring cities with fast food restaurants is \(k\) km.
Sergey began his journey at some city \(s\) and traveled along the circle, making stops at cities each \(l\) km (\(l > 0\)), until he stopped in \(s\) once again. Sergey then forgot numbers \(s\) and \(l\), but he remembers that the distance from the city \(s\) to the nearest fast food restaurant was \(a\) km, and the distance from the city he stopped at after traveling the first \(l\) km from \(s\) to the nearest fast food restaurant was \(b\) km. Sergey always traveled in the same direction along the circle, but when he calculated distances to the restaurants, he considered both directions.
Now Sergey is interested in two integers. The first integer \(x\) is the minimum number of stops (excluding the first) Sergey could have done before returning to \(s\). The second integer \(y\) is the maximum number of stops (excluding the first) Sergey could have done before returning to \(s\).
Input
The first line contains two integers \(n\) and \(k\) (\(1 \le n, k \le 100\,000\)) — the number of fast food restaurants on the circle and the distance between the neighboring restaurants, respectively.
The second line contains two integers \(a\) and \(b\) (\(0 \le a, b \le \frac{k}{2}\)) — the distances to the nearest fast food restaurants from the initial city and from the city Sergey made the first stop at, respectively.
Output
Print the two integers \(x\) and \(y\).
Sample Input1
2 3
1 1
Sample Output1
1 6
Sample Input2
3 2
0 0
Sample Output2
1 3
Sample Input3
1 10
5 3
Sample Output3
5 5
Hint
In the first example the restaurants are located in the cities \(1\) and \(4\), the initial city \(s\) could be \(2\), \(3\), \(5\), or \(6\). The next city Sergey stopped at could also be at cities \(2, 3, 5, 6\). Let's loop through all possible combinations of these cities. If both \(s\) and the city of the first stop are at the city \(2\) (for example, \(l = 6\)), then Sergey is at \(s\) after the first stop already, so \(x = 1\). In other pairs Sergey needs \(1, 2, 3\), or \(6\) stops to return to \(s\), so \(y = 6\).
In the second example Sergey was at cities with fast food restaurant both initially and after the first stop, so \(l\) is \(2\), \(4\), or \(6\). Thus \(x = 1\), \(y = 3\).
In the third example there is only one restaurant, so the possible locations of \(s\) and the first stop are: \((6, 8)\) and \((6, 4)\). For the first option \(l = 2\), for the second \(l = 8\). In both cases Sergey needs \(x=y=5\) stops to go to \(s\).
Solution
我们根据题目的\(a, b, k\)计算出\(l\)的\(4\)种可能:
\(a + b\)
\(k - a + b\)
\(k + a - b\)
\(k - a - b\)
每走一步的答案就是\(\frac{n \times k}{\gcd(n \times k, step)}\)。
然后枚举找个最大的与最小的就可以了。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
const LL INF = 1e18;
LL n, k, a, b, step;
int main() {
scanf("%lld%lld%lld%lld", &n, &k, &a, &b);
LL Max = -INF, Min = INF;
step = fabs(a + b);//第1种情况
while (step <= n * k) {//枚举步数
if (step) {
Max = max(Max, n * k / __gcd(n * k, step));
Min = min(Min, n * k / __gcd(n * k, step));
}
step += k;
}
step = fabs(k - a + b);//第2种情况
while (step <= n * k) {//枚举步数
if (step) {
Max = max(Max, n * k / __gcd(n * k, step));
Min = min(Min, n * k / __gcd(n * k, step));
}
step += k;
}
step = fabs(k - b + a);//第3种情况
while (step <= n * k) {//枚举步数
if (step) {
Max = max(Max, n * k / __gcd(n * k, step));
Min = min(Min, n * k / __gcd(n * k, step));
}
step += k;
}
step = fabs(k - a - b);//第4种情况
while (step <= n * k) {//枚举步数
if (step) {
Max = max(Max, n * k / __gcd(n * k, step));
Min = min(Min, n * k / __gcd(n * k, step));
}
step += k;
}
printf("%lld %lld\n", Min, Max);
return 0;
}
『题解』Codeforces1142A The Beatles的更多相关文章
- 『题解』洛谷P1063 能量项链
原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...
- 『题解』Codeforces1142B Lynyrd Skynyrd
更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Recently Lynyrd and Skynyrd went to a ...
- 『题解』洛谷P1993 小K的农场
更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...
- 『题解』洛谷P2296 寻找道路
更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 在有向图\(\mathrm G\)中,每条边的长度均为\(1\),现给定起点和终点 ...
- 『题解』洛谷P1351 联合权值
更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...
- 『题解』Codeforces656E Out of Controls
更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description You are given a complete undirected gr ...
- 『题解』洛谷P2170 选学霸
更好的阅读体验 Portal Portal1: Luogu Description 老师想从\(N\)名学生中选\(M\)人当学霸,但有\(K\)对人实力相当,如果实力相当的人中,一部分被选上,另一部 ...
- 『题解』洛谷P1083 借教室
更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Portal3: Vijos Description 在大学期间,经常需要租借教室.大到院系举办活动,小到 ...
- 『题解』Codeforces9D How many trees?
更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description In one very old text file there was wr ...
随机推荐
- Web Storage和cookie的区别——每日一题20190629
Web Storage? 使用HTML5可以在本地存储用户的浏览数据. 使用的主要目的是为了克服Cookie带来的一些限制,当数据需要被严格控制在客户端上时,无需持续的将数据发回服务器 主要目标: 1 ...
- Nebula 架构剖析系列(一)图数据库的存储设计
摘要 在讨论某个数据库时,存储 ( Storage ) 和计算 ( Query Engine ) 通常是讨论的热点,也是爱好者们了解某个数据库不可或缺的部分.每个数据库都有其独有的存储.计算方式,今天 ...
- html、css以及javascript的注释方式
HTML:<!--注释内容 -->; CSS:/* 注释内容*/ JS: //注 释内容; 或者块/* 注释内容 */, sublime中注释方法:选中注释内容+ctrl+/ , ...
- 分库分表(7)--- SpringBoot+ShardingSphere实现分库分表 + 读写分离
分库分表(7)--- ShardingSphere实现分库分表+读写分离 有关分库分表前面写了六篇博客: 1.分库分表(1) --- 理论 2.分库分表(2) --- ShardingSphere(理 ...
- C# 动态(不定)类型和不定参数数量,使用param写入CSV文档的最简单方法,提供excel(或记事本)阅读支持格式
在开发一个项目,使用C#写入CSV文件时,虽并未遇到太多阻碍,但是很多小伙伴估计和我有过同样的想法.简单的写入CSV,固定参数数量就好了很简单写完.但是如果遇到你得到的数据参数数量和参数类型未知或者动 ...
- caffe中softmax源码阅读
(1) softmax函数 (1) 其中,zj 是softmax层的bottom输入, f(zj)是softmax层的top输 ...
- Python开发【第四篇】语句与函数
语句 statement 语句是由一些表达式组成,通常一条语句可以独立的执行来完成一部分事情,并且形成结果. 多条语句写在一行内要用分号分开 例子: print('hello world') #这是一 ...
- java与java web数组括号的不同
由于之前学JAVA SE数组时习惯了数组括号的写法,到了Web这里写了有点不太习惯了,赶快写篇博客加深一下印象哈 一. java和java web中的数组的不同 java: int[] arr = n ...
- 3.如何理解开多线程可以充分利用CPU?
如何理解开多线程可以充分利用CPU? <1>操作系统采用时间片轮转调度算法分配的时间片给每个进程中的线程 <2>操作系统的时间片轮转调度算法分配的时间片 在别的进程中都没有准备 ...
- 压敏电阻的保护作用—NDF达孚电子科技
压敏电阻是常见的电子元器件之一,它的保护作用被大家熟知和运用.压敏电阻的主要用于在电路承受过压时进行电压钳位,吸收多余的电流以保护灵敏器件.压敏电阻的导电特性随着施加电压的变化呈非线性变化,它能保护电 ...