BZOJ2440完全平方数(莫比乌斯反演)
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9
, T ≤ 50
题解:
题目大意:求第k个无平方因子数是多少(无视原题干,1也是完全平方数那岂不是一个数也送不出去了?
无平方因子数(square-free number),即质因数分解之后所有质因数的次数都为1的数
首先二分答案 问题转化为求x以内有多少个无平方因子数
根据容斥原理可知 对于√x以内的所有质数 x以内的无平方因子数=无需是任何质数的倍数的数的数量(即x)-是至少一个质数平方倍数的数的数量+是至少两个质数平方倍数的数的数量-是至少三个质数平方倍数的数的数量...
我们回去考虑莫比乌斯函数,我们发现每一个质数乘积的符号与莫比乌斯函数的符号恰好吻合!
于是我们枚举每一个数,如果这个数是奇数个不同质数的乘积,那么mu为负,偶数个则mu为正,否则mu为零
故答案即Σx/(i*i)*mu[i]
/**************************************************************
Problem: 2440
User: SongHL
Language: C++
Result: Compile_Error
****************************************************************/ #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e4+;
ll Prime[maxn],mob[maxn],vis[maxn],cnt;
int T,K; void Mobius()
{
memset(Prime,,sizeof Prime);
memset(mob,,sizeof mob);
memset(vis,,sizeof vis);
mob[]=; cnt=;
for(ll i=;i<maxn;++i)
{
if(!vis[i]) Prime[cnt++]=i,mob[i]=-;
for(ll j=;j<cnt&&i*Prime[j]<maxn;++j)
{
vis[i*Prime[j]]=;
if(i%Prime[j]) mob[i*Prime[j]]=-mob[i];
else { mob[i*Prime[j]]=; break;}
}
}
} int work(int x)
{
int ans=;
for(int i=;i*i<=x;++i) ans+=x/(i*i) * mob[i];
return ans;
} int Judge()
{
int l=,r=K<<,mid;
while(l+<r)
{
mid=(l>>)+(r>>) +(l&r&);
if(work(mid)>=K) r=mid;
else l=mid;
}
if(work(l)>=K) return l;
return r;
} int main()
{
scanf("%d",&T);
Mobius();
while(T--) { scanf("%d",&K); printf("%d\n",Judge()); }
return ;
}
BZOJ2440完全平方数(莫比乌斯反演)的更多相关文章
- bzoj2440 完全平方数 莫比乌斯值+容斥+二分
莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...
- 【bzoj2440】[中山市选2011]完全平方数 莫比乌斯反演
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱.这天是小 ...
- HYSBZ 2440 完全平方数(莫比乌斯反演)
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 若i为质数,n为i*i的倍数,则称n为含平方因子数. 求1~n的无平方因子数. F(x) ...
- BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...
- BZOJ 2440 完全平方数 莫比乌斯反演模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...
- 【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)
[BZOJ2440]完全平方数(二分答案,莫比乌斯反演) 题面 BZOJ 题解 很显然,二分一个答案 考虑如何求小于等于这个数的非完全平方数倍数的个数 这个明显可以直接,莫比乌斯反演一下 然后这题就很 ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
- Bzoj2440 完全平方数
Time Limit: 10000MS Memory Limit: 131072KB 64bit IO Format: %lld & %llu Description 小 X 自幼就很 ...
- bzoj2440完全平方数
题目链接 上来先吐槽题面!!!!!! 你跟我说$1$不是完全平方数昂? 看了半天样例啊. 活生生的半天$……$ 莫比乌斯 反演 函数容斥一下,每次二分就好 反正本宝宝不知道反演是啥. 每次判断应 ...
随机推荐
- 开启docker远程访问
开启docker远程访问 进入到/lib/systemd/system/docker.service vim /lib/systemd/system/docker.service 找到ExecStar ...
- java map遍历方式及效率
本文转载自Java Map遍历方式的选择. 只给出遍历方式及结论.测试数据可以去原文看. 如果你使用HashMap 同时遍历key和value时,keySet与entrySet方法的性能差异取决于ke ...
- 关于MXNet
关于人工智能,机器学习,深度学习 三者关系:从宏观到微观. 机器学习是人工智能的一部分,深度学习是机器学习的一部分. 基础:大数据. 关于深度学习 深度学习基于神经网络, 关于神经网络:通过叠加网络层 ...
- Worktile正式发布全新研发产品!
经过近一年时间的打磨,Worktile研发产品正式发布啦!和以往Worktile版本升级不同的是,这是一个全新的产品形态,目前已上线 Agile(敏捷开发).Pipe(持续交付).Testhub(测试 ...
- nyoj 53-不高兴的小明 (遍历)
53-不高兴的小明 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:28 submit:89 题目描述: 小明又出问题了.妈妈认为聪明的小明应该 ...
- php Swoole实现毫秒级定时任务
项目开发中,如果有定时任务的业务要求,我们会使用linux的crontab来解决,但是它的最小粒度是分钟级别,如果要求粒度是秒级别的,甚至毫秒级别的,crontab就无法满足,值得庆幸的是swoole ...
- PostGIS 爆管分析之根据爆点找出所有影响阀门
环境: Win10 ArcMap10.4(用于数据处理) postgresql9.4 postgis2.2.3 pgRouting2.3(postgresql插件) 说明: 做爆管分析的第一步,需要先 ...
- MySQL基础知识面试与答案
1.Mysql 的存储引擎,myisam和innodb的区别. 答: 1.MyISAM 是非事务的存储引擎,适合用于频繁查询的应用.表锁,不会出现死锁,适合小数据,小并发. 2.innodb是支持事务 ...
- Django安装和使用---python(3)
一.安装 一般使用cmd 安装就可以 pip install django // 这是最新版本 pip install django==2.0.2(自定义安装2.0.2版本) 手动安装通过下载方式 d ...
- Java求吸血鬼数算法(通用)
/*吸血鬼数字是指位数为偶数的数字,可以由一 * 对数字相乘而得到,而这对数字各包含乘积的一半位数的数字, * 其中从最初的数字中选取的数字可以任意排序. * 以两个0结尾的数字是不允许的. * * ...