题目链接: http://poj.org/problem?id=2387

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it,
uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in
which Bessie stands all day is landmark N. Cows travel in the field
using T (1 <= T <= 2000) bidirectional cow-trails of various
lengths between the landmarks. Bessie is not confident of her navigation
ability, so she always stays on a trail from its start to its end once
she starts it.

Given the trails between the landmarks, determine the minimum
distance Bessie must walk to get back to the barn. It is guaranteed
that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated
integers. The first two integers are the landmarks between which the
trail travels. The third integer is the length of the trail, range
1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

最短路模板题,求1到n的最短路
 #include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<stack>
#include<queue> using namespace std; int way[][];
bool flag[];
int main(){
ios::sync_with_stdio( false ); int n, m; while( cin >> m >> n ){
int x, y, d;
memset( way, 0x3f3f3f3f, sizeof( way ) );
memset( flag, false, sizeof( flag ) );
for( int i = ; i < m; i++ ){
cin >> x >> y >> d;
way[x][y] = way[y][x] = min( way[x][y], d );
} for( int k = ; k < n - ; k++ ){
int minv = 0x3f3f3f3f, mini; for( int i = ; i < n; i++ ){
if( !flag[i] && minv > way[n][i] ){
minv = way[n][i];
mini = i;
}
} flag[mini] = true;
for( int i = ; i < n; i++ ){
if( !flag[i] ){
way[n][i] = min( way[n][i], way[n][mini] + way[mini][i] );
}
}
} cout << way[n][] << endl;
} return ;
}

												

POJ-2387 Til the Cows Come Home ( 最短路 )的更多相关文章

  1. POJ 2387 Til the Cows Come Home(最短路模板)

    题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...

  2. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  3. POJ 2387 Til the Cows Come Home (图论,最短路径)

    POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...

  4. POJ.2387 Til the Cows Come Home (SPFA)

    POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...

  5. POJ 2387 Til the Cows Come Home

    题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K ...

  6. POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)

    传送门 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 46727   Acce ...

  7. 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33015   Accepted ...

  8. POJ 2387 Til the Cows Come Home (最短路 dijkstra)

    Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...

  9. POJ 2387 Til the Cows Come Home 【最短路SPFA】

    Til the Cows Come Home Description Bessie is out in the field and wants to get back to the barn to g ...

  10. POJ 2387 Til the Cows Come Home Dijkstra求最短路径

    Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much s ...

随机推荐

  1. 【iOS】this class is not key value coding-compliant for the key ...

    一般此问题 都是由 interface build 与代码中 IBOutlet 的连接所引起的. 可能是在代码中对 IBOutlet 的名称进行了修改,导致 interface build 中的连接实 ...

  2. Eclipse Other Projects小问题

    Eclipse 不知什么时候多了个 "Other Projects" 文件夹,所有的项目又多了一层目录,如图所示: 虽然对功能没任何影响,但每次打开有些麻烦,多少感觉有些不爽…… ...

  3. Spring Boot中自定义注解+AOP实现主备库切换

    摘要: 本篇文章的场景是做调度中心和监控中心时的需求,后端使用TDDL实现分表分库,需求:实现关键业务的查询监控,当用Mybatis查询数据时需要从主库切换到备库或者直接连到备库上查询,从而减小主库的 ...

  4. 自练Eclipse搭建SSH全自动注解博客项目笔记

    1.创建一个动态的java项目 2.导入搭建所需要的jar包 3.配置web.xml文件 1).头文件 2).struts2的拦截器 3).定位加载Spring容器的配置文件 4).监听 5). 6) ...

  5. 夯实Java基础(一)——数组

    1.Java数组介绍 数组(Array):是多个相同类型元素按一定顺序排列的集合. 数组是编程中最常见的一种数据结构,可用于存储多个数据,每个数组元素存放一个数据,通常我们可以通过数组元素的索引来访问 ...

  6. 【译】尝试使用Nullable Reference Types

    随着.NET Core 3.0 Preview 7的发布,C#8.0已被认为是“功能完整”的.这意味着它们的最大亮点Nullable Reference Types,在行为方面也被锁定在.NET Co ...

  7. element ui 登录验证,路由守卫

    <template> <!-- el-form :label-position="labelPosition" 设置label的位置 :model 用来给表单设置 ...

  8. 实现API优先设计的重要性和实现方式

    应用API优先的方法意味着设计API时,使其具有一致性和适应性,无论应用于哪些开发项目.对API使用API​​描述语言(如OpenAPI)是关键,因为它有助于建立API与其他程序通信的枢纽,即使这些系 ...

  9. Nunit与Xunit介绍

    Nunit安装 首先说下,nunit2.X与3.X版本需要安装不同的vs扩展. nunit2.x安装 安装如上3个,辅助创建nunit测试项目与在vs中运行单元测试用例 . 1.Nunit2 Test ...

  10. 以图搜图之模型篇: 基于 InceptionV3 的模型 finetune

    在以图搜图的过程中,需要以来模型提取特征,通过特征之间的欧式距离来找到相似的图形. 本次我们主要讲诉以图搜图模型创建的方法. 图片预处理方法,看这里:https://keras.io/zh/prepr ...