原文链接:一文搞懂 Prometheus 的直方图

Prometheus 中提供了四种指标类型(参考:Prometheus 的指标类型),其中直方图(Histogram)和摘要(Summary)是最复杂和难以理解的,这篇文章就是为了帮助大家加深对这 histogram 类型指标的理解。

1. 什么是 Histogram?

根据上篇文档,Histogram 会在一段时间范围内对数据进行采样(通常是请求持续时间或响应大小等),并将其计入可配置的存储桶(bucket)中。但这句话还是不太好理解,下面通过具体的示例来说明。

假设我们想监控某个应用在一段时间内的响应时间,最后监控到的样本的响应时间范围为 0s~10s。现在我们将样本的值域划分为不同的区间,即不同的 bucket,每个 bucket 的宽度是 0.2s。那么第一个 bucket 表示响应时间小于等于 0.2s 的请求数量,第二个 bucket 表示响应时间大于 0.2s 小于等于 0.4s 的请求数量,以此类推。

Prometheus 的 histogram 是一种累积直方图,与上面的区间划分方式是有差别的,它的划分方式如下:还假设每个 bucket 的宽度是 0.2s,那么第一个 bucket 表示响应时间小于等于 0.2s 的请求数量,第二个 bucket 表示响应时间小于等于 0.4s 的请求数量,以此类推。也就是说,每一个 bucket 的样本包含了之前所有 bucket 的样本,所以叫累积直方图。

2. 为什么是累积直方图?

上节内容告诉我们,Prometheus 中的 histogram 是累积的,这是很奇怪的,因为通常情况下非累积的直方图更容易理解。Prometheus 为什么要这么做呢?

想象一下,如果 histogram 类型的指标中加入了额外的标签,或者划分了更多的 bucket,那么样本数据的分析就会变得越来越复杂。如果 histogram 是累积的,在抓取指标时就可以根据需要丢弃某些 bucket,这样可以在降低 Prometheus 维护成本的同时,还可以粗略计算样本值的分位数。通过这种方法,用户不需要修改应用代码,便可以动态减少抓取到的样本数量。

假设某个 histogram 类型指标的样本数据如下:

现在我们希望 Prometheus 在抓取指标时丢弃响应时间在 100ms 以下的 bucket,就可以通过下面的 relabel 配置来实现:

其中,example_latency_seconds_bucket 用来匹配标签 __name__ 的值,'0.0.*' 用来匹配标签 le 的值,即 le 的值为 0.0x。然后将匹配到的样本丢弃。

通过这种方法,你可以丢弃任意的 bucket,但不能丢弃 le="+Inf" 的 bucket,因为 histogram_quantile 函数需要使用这个标签。

另外 histogram 还提供了 _sum 指标和 _count 指标,即使你丢弃了所有的 bucket,仍然可以通过这两个指标值来计算请求的平均响应时间。

通过累积直方图的方式,还可以很轻松地计算某个 bucket 的样本数占所有样本数的比例。例如,想知道响应时间小于等于 1s 的请求占所有请求的比例,可以通过以下公式来计算:

example_latency_seconds_bucket{le="1.0"} / ignoring (le) example_latency_seconds_bucket{le="+Inf"}

3. 分位数计算

Prometheus 通过 histogram_quantile 函数来计算分位数(quantile),而且是一个预估值,并不完全准确,因为这个函数是假定每个区间内的样本分布是线性分布来计算结果值的。预估的准确度取决于 bucket 区间划分的粒度,粒度越大,准确度越低。以下图为例:

假设有 10000 个样本,第 9501 个样本落入了第 8 个 bucket。第 8 个 bucket 总共有 368 个样本,其中第 9501 个样本在该 bucket 中属于第 93 个样本。

根据 Prometheus 源代码文件 promql/quantile.go 第 108 行的公式:

return bucketStart + (bucketEnd-bucketStart)*float64(rank/count)

我们可以计算(quantile=0.95)的样本值为:

这个值已经很接近精确的分位数值了。关于 histogram_quantile 函数的详细使用方式,请参考:PromQL 内置函数

4. 总结

本文主要介绍了 histogram 的工作原理以及分位数的计算方法,相信通过本文的抛砖引玉,大家应该对 Prometheus 的 histogram 有了更深一步的了解,下篇文章将会为大家呈现 Summary 的工作方式。

5. 参考资料


一文搞懂 Prometheus 的直方图的更多相关文章

  1. 一文搞懂RAM、ROM、SDRAM、DRAM、DDR、flash等存储介质

    一文搞懂RAM.ROM.SDRAM.DRAM.DDR.flash等存储介质 存储介质基本分类:ROM和RAM RAM:随机访问存储器(Random Access Memory),易失性.是与CPU直接 ...

  2. 基础篇|一文搞懂RNN(循环神经网络)

    基础篇|一文搞懂RNN(循环神经网络) https://mp.weixin.qq.com/s/va1gmavl2ZESgnM7biORQg 神经网络基础 神经网络可以当做是能够拟合任意函数的黑盒子,只 ...

  3. Web端即时通讯基础知识补课:一文搞懂跨域的所有问题!

    本文原作者: Wizey,作者博客:http://wenshixin.gitee.io,即时通讯网收录时有改动,感谢原作者的无私分享. 1.引言 典型的Web端即时通讯技术应用场景,主要有以下两种形式 ...

  4. 一文搞懂vim复制粘贴

    转载自本人独立博客https://liushiming.cn/2020/01/18/copy-and-paste-in-vim/ 概述 复制粘贴是文本编辑最常用的功能,但是在vim中复制粘贴还是有点麻 ...

  5. 三文搞懂学会Docker容器技术(中)

    接着上面一篇:三文搞懂学会Docker容器技术(上) 6,Docker容器 6.1 创建并启动容器 docker run [OPTIONS] IMAGE [COMMAND] [ARG...] --na ...

  6. 三文搞懂学会Docker容器技术(下)

    接着上面一篇:三文搞懂学会Docker容器技术(上) 三文搞懂学会Docker容器技术(中) 7,Docker容器目录挂载 7.1 简介 容器目录挂载: 我们可以在创建容器的时候,将宿主机的目录与容器 ...

  7. 一文搞懂所有Java集合面试题

    Java集合 刚刚经历过秋招,看了大量的面经,顺便将常见的Java集合常考知识点总结了一下,并根据被问到的频率大致做了一个标注.一颗星表示知识点需要了解,被问到的频率不高,面试时起码能说个差不多.两颗 ...

  8. 一文搞懂 js 中的各种 for 循环的不同之处

    一文搞懂 js 中的各种 for 循环的不同之处 See the Pen for...in vs for...of by xgqfrms (@xgqfrms) on CodePen. for &quo ...

  9. 一文搞懂如何使用Node.js进行TCP网络通信

    摘要: 网络是通信互联的基础,Node.js提供了net.http.dgram等模块,分别用来实现TCP.HTTP.UDP的通信,本文主要对使用Node.js的TCP通信部份进行实践记录. 本文分享自 ...

随机推荐

  1. hihoCoder 1312:搜索三·启发式搜索(A* + 康托展开)

    题目链接 题意 中文题意 思路 做这题的前置技能学习 康托展开 这个东西我认为就是在排列组合问题上的Hash算法,可以压缩空间. A*搜索. 这里我使用了像k短路一样的做法,从最终状态倒回去预处理一遍 ...

  2. HDU 3416:Marriage Match IV(最短路+最大流)

    http://acm.hdu.edu.cn/showproblem.php?pid=3416 题意:给出n个点m条边,边信息分别是两个端点和一个费用,再给出一个起点和一个终点,问从起点到终点的完全不相 ...

  3. Html5学习导航

    给大家推荐一下学习研究HTML5必备的一些个网站,更加有利于大家对HTML5的学些和研究.如果各位童鞋还有更多的,欢迎投递资源给我们,也可以支持我们,让我们利用大家的力量收集更多的HTML5学习资料, ...

  4. 基于C#的机器学习--深层信念网络

    我们都听说过深度学习,但是有多少人知道深度信念网络是什么?让我们从本章开始回答这个问题.深度信念网络是一种非常先进的机器学习形式,其意义正在迅速演变.作为一名机器学习开发人员,对这个概念有一定的了解是 ...

  5. kuangbin专题 专题一 简单搜索 迷宫问题 POJ - 3984

    题目链接:https://vjudge.net/problem/POJ-3984 这个题目,emm,上代码,看的估计应该是刚开始接触搜索的,我带点注释,你能慢慢理解. #include <ios ...

  6. Greenplum客户端访问控制

    1. 问题描述 Greenplum默认是对客户端不开放的,即客户端要访问Greenplum数据库,需要首先开通权限. 2. 解决方案: 2.1.安装greenplum-cc-web控制台. ​ Gp的 ...

  7. WEB前端--返回顶部特效源码

    <!DOCTYPE html><html> <head> <meta charset="utf-8" /> <title> ...

  8. base16,base32,base64 编码方式的通俗讲解

    作者:林冠宏 / 指尖下的幽灵 博客:http://www.cnblogs.com/linguanh/ GitHub : https://github.com/af913337456/ 腾讯云专栏: ...

  9. 【题解】导游-C++

    Description 宁波市的中小学生们在镇海中学参加程序设计比赛之余,热情的主办方邀请同学们参观镇海中学内的各处景点,已 知镇海中学内共有n处景点.现在有n位该校的学生志愿承担导游和讲解任务.每个 ...

  10. Lucene05-分词器

    Lucene05-分词器 1.概念 Analyzer(分词器)的作用是把一段文本中的词按规则取出所包含的所有词.对应的是Analyzer类,这是一个抽象类,切分词的具体规则是由子类实现的,所以对于不同 ...