考试的时候以为就是简单的概率期望题,考完后知道是简单的概率期望DP题,完美爆零。

  这道题数据范围很小,很容易让人想到状压,不过貌似没什么可压的。那么只能说明这道题复杂度很高了,状态数组f[o][i][j][k]为第o次攻击后出现有i个1滴血的j个2滴血的,k个3滴血的情况的概率。那么转移方程就明了了。

  1.f[o][i][j][k]+=f[o-1][i][j][k]/(i+j+k+1)英雄收到攻击

  2.f[o][i][j][k]+=f[o-1][i+1][j][k]*(i+1)/(i+j+k+2)有一个1滴血的奴隶主被击杀。前提是i+j+k+1<=7

  3.f[o][i][j][k]+=f[o-1][i-1][j+1][k-1]*(j+1)/(i+j+k)有一个2滴血的奴隶主收到攻击,召唤一个奴隶主,前提是i!=0&&k!=0

  4.f[[o][i][j][k]+=f[o-1][i][j-1][k]*(k/i+j+k)有一个3滴血的奴隶主收到攻击,召唤一个奴隶主,前提是j!=0。

  5由于仆从满7个后不会再召唤,所以当i+j+k=7时需要特判受到攻击却未召唤的情况,即f[o][i][j][k]+=f[o-1][i-1][j+1][k],f[o][i][j][k]+=f[o-1][i][j-1][k+1],前提分别为i!=0,j!=0。

  转移方程写出来别挂精度上就行了,但是要注意我们的状态为受到攻击后场上局面的状态,真正结果为0~k-1中所有状态转移方程中1/仆从+1,一开始写的为1~k身败名裂……

 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cmath>
using namespace std;
int t,n;
double f[][][][];
int main(){
// freopen("defcthun.in","r",stdin);
// freopen("defcthun.out","w",stdout);
scanf("%d",&t);
while(t--)
{
memset(f,,sizeof(f));
scanf("%d",&n);
int xx,yy,zz;
scanf("%d%d%d",&xx,&yy,&zz);
f[][xx][yy][zz]=1.0;
for(int o=;o<n;o++)
{
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
for(int k=;k<=;k++)
{
if(i+j+k>)break;
if(i+j+k+<=) f[o][i][j][k]+=f[o-][i+][j][k]*(double(i+)/double(i++j+k+));
f[o][i][j][k]+=f[o-][i][j][k]/double(i+j+k+);
if(i&&k) f[o][i][j][k]+=f[o-][i-][j+][k-]*(double(j+)/double(i+k+j));
if(j) f[o][i][j][k]+=f[o-][i][j-][k]*(double(k)/double(i+j+k));
if(i+j+k==)
{
if(i) f[o][i][j][k]+=f[o-][i-][j+][k]*double(j+)/double(i+j+k+);
if(j) f[o][i][j][k]+=f[o-][i][j-][k+]*double(k+)/double(i+j+k+);
}
}
}
}
}
double sum=0.0;
for(int o=;o<n;o++)
{
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
for(int k=;k<=;k++)
{
if(i+j+k>)break; sum+=f[o][i][j][k]*1.0/double(j+k+i+);
}
}
}
}
printf("%.2lf\n",sum);
}
//while(1);
return ;
}

[Lydsy2017年4月月赛]抵制克苏恩题解的更多相关文章

  1. 【BZOJ4832】[Lydsy2017年4月月赛]抵制克苏恩 概率与期望

    [BZOJ4832][Lydsy2017年4月月赛]抵制克苏恩 Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q同学会告诉 ...

  2. [补档][Lydsy2017年4月月赛]抵制克苏恩

    [Lydsy2017年4月月赛]抵制克苏恩 题目 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平. 如果你不玩炉石传说,不必担心,小Q同学会告诉你所有相关的细节.炉石传说是这样的一 ...

  3. 【BZOJ 4832 】 4832: [Lydsy2017年4月月赛]抵制克苏恩 (期望DP)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 275  Solved: 87 Descripti ...

  4. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  5. 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp

    题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...

  6. BZOJ4832: [Lydsy2017年4月月赛]抵制克苏恩

    传送门 题目大意: 攻击k次,每次可攻击随从或英雄. 随从数不大于7个,且1滴血的a个,2滴b个,3滴c个. 攻击一次血-1,如果随从没死可以生成3滴血随从一个 题解: 概率/期望dp f[i][j] ...

  7. 【BZOJ 4832】 [Lydsy2017年4月月赛] 抵制克苏恩 期望概率dp

    打记录的题打多了,忘了用开维记录信息了......我们用f[i][j][l][k]表示已经完成了i次攻击,随从3血剩j个,2血剩l个,1血剩k个,这样我们求出每个状态的概率,从而求出他们对答案的贡献并 ...

  8. [BZOJ 4832][lydsy 4月赛] 抵制克苏恩

    题面贴一发 [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 443  Solved: 164[Submit][ ...

  9. bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT

    4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MB Description 定义二元运算 opt 满足   现在给定一 ...

随机推荐

  1. delphi中使用词霸2005的动态库XdictGrb.dll实现屏幕取词

    近日来,在网上发现关于屏幕取词技术的捷径,搜索很长时间,发现实现方式以VB出现的居多,但是通过Delphi来实现的却好象没有看到,自己参考着VB的相关代码琢磨了一下通过delphi来实现的方式. 其实 ...

  2. QuickReport根据每行的内容长度动态调整DetailBand1的行高

    procedure TPosPubFactureRep.DetailBand1BeforePrint(Sender: TQRCustomBand; var PrintBand: Boolean); v ...

  3. Dec Working Note

    01 新的一个月,也是16年最后一个月,意义非凡. 那么第一天就要来点非凡的意义:提出离职. 纠结了好久,最后还是离职了,感觉是好他妈的爽,纠结什么呢. 不过今天状态不好,最近状态一直不好,上火,也没 ...

  4. C++与QML混合编程实现2048

    http://blog.csdn.net/ieearth/article/details/42705305

  5. 【spring boot】application.properties官方完整文档

    官方地址: https://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/ 进入搜索: Appendice ...

  6. Spring之ApplicationContext

    (1)ApplicationContext接口容器 ApplicationContext用于加载Spring的配置文件,在程序中充当“容器”的角色.其实现类有两个.通过Ctrl +T查看: A.配置文 ...

  7. java集合的方法及使用详解

    一.java集合的分类及相互之间的关系 Collection接口:向下提供了List和Set两个子接口 |------List接口:存储有序的,存储元素可以重复 |------ArrayList(主要 ...

  8. awk数组统计

    处理以下文件内容,将域名取出并根据域名进行计数排序处理:(百度和sohu面试题) http://www.etiantian.org/index.html http://www.etiantian.or ...

  9. Hexo+NexT(零):最全Hexo+Next搭建博客教程

    快速.简洁且高效的博客框架 有位大神说,喜欢写博客的人的人,折腾博客会经历三个阶段.找到一个免费空间,搭建一个博客,很欣喜,很有成就感,此为一阶段:受限免费空间各种限制,自己买空间和域名,实现对博客的 ...

  10. Scala 学习之路(二)—— 基本数据类型和运算符

    一.数据类型 1.1 类型支持 Scala 拥有下表所示的数据类型,其中Byte.Short.Int.Long和Char类型统称为整数类型,整数类型加上Float和Double统称为数值类型.Scal ...