方案合法相当于要求接口之间配对,黑白染色一波,考虑网络流。有一个很奇怪的限制是不能旋转直线型水管,考虑非直线型水管有什么特殊性,可以发现其接口都是连续的。那么对于旋转水管,可以看做是把顺/逆时针方向上最后的接口提到最前。于是用四个点表示某格子的四个方向,以上述方式只移动一次就能相互转换的方向之间连费用1的边。然后在相邻格子可以相互匹配的方向之间连边,跑费用流即可。注意费用流的无向边必须按有向边的方式建反向边。不明白讨论一大串的是在干啥。

  

  然后就非常悲惨了。多路增广的费用流会跑的很快,然而并不会。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 10010
#define K 2010
#define S 10001
#define T 10002
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,id[K][],p[N],d[N],q[N],pre[N],t=-,cnt,tot,ans,val;
bool flag[N];
struct data{int to,nxt,cap,flow,cost;
}edge[N<<];
void addedge(int x,int y,int z,int cost)
{
t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,edge[t].flow=,edge[t].cost=cost,p[x]=t;
t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=,edge[t].flow=,edge[t].cost=-cost,p[y]=t;
}
inline int trans(int x,int y){return (x-)*m+y;}
inline bool isblack(int x,int y){return (x&)^(y&);}
inline int inc(int &x){x++;if (x>cnt+) x-=cnt+;return x;}
bool spfa()
{
memset(d,,sizeof(d));d[S]=;
memset(flag,,sizeof(flag));
int head=,tail=;q[]=S;
do
{
int x=q[inc(head)];flag[x]=;
for (int i=p[x];~i;i=edge[i].nxt)
if (d[x]+edge[i].cost<d[edge[i].to]&&edge[i].flow<edge[i].cap)
{
d[edge[i].to]=d[x]+edge[i].cost;
pre[edge[i].to]=i;
if (!flag[edge[i].to]) q[inc(tail)]=edge[i].to,flag[edge[i].to]=;
}
}while (head!=tail);
return d[T]<N;
}
void ekspfa()
{
while (spfa())
{
int v=;
for (int i=T;i!=S;i=edge[pre[i]^].to)
if (edge[pre[i]].cap==edge[pre[i]].flow) {v=;break;}
if (v)
{
ans++;
for (int i=T;i!=S;i=edge[pre[i]^].to)
val+=edge[pre[i]].cost,edge[pre[i]].flow++,edge[pre[i]^].flow--;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5120.in","r",stdin);
freopen("bzoj5120.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
memset(p,,sizeof(p));
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
{
int x=read(),u=,v=trans(i,j);
for (int k=;k<;k++)
{
id[v][k]=++cnt;
if (x&(<<k)) u++,isblack(i,j)?addedge(S,cnt,,):addedge(cnt,T,,);
}
tot+=u;
if (x==||x==) continue;
if (u==||u==) for (int k=;k<;k++) addedge(id[v][k],id[v][k+&],,),addedge(id[v][k+&],id[v][k],,);
if (u==)
{
addedge(id[v][],id[v][],,),addedge(id[v][],id[v][],,);
addedge(id[v][],id[v][],,),addedge(id[v][],id[v][],,);
}
}
if (tot&) {cout<<-;return ;}tot>>=;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (isblack(i,j))
{
int v=trans(i,j);
if (i>) addedge(id[v][],id[trans(i-,j)][],,);
if (j<m) addedge(id[v][],id[trans(i,j+)][],,);
if (i<n) addedge(id[v][],id[trans(i+,j)][],,);
if (j>) addedge(id[v][],id[trans(i,j-)][],,);
}
ekspfa();
if (ans<tot) cout<<-;
else cout<<val;
return ;
}

BZOJ5120 无限之环(费用流)的更多相关文章

  1. BZOJ5120 [2017国家集训队测试]无限之环 费用流

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ5120 题意概括 原题挺简略的. 题解 本题好难. 听了任轩笛大佬<国家队神犇>的讲课才 ...

  2. BZOJ.5120.[清华集训2017]无限之环(费用流zkw 黑白染色)

    题目链接 LOJ 洛谷 容易想到最小费用最大流分配度数. 因为水管形态固定,每个点还是要拆成4个点,分别当前格子表示向上右下左方向. 然后能比较容易地得到每种状态向其它状态转移的费用(比如原向上的可以 ...

  3. BZOJ 5120: [2017国家集训队测试]无限之环(费用流)

    传送门 解题思路 神仙题.调了一个晚上+半个上午..这道咋看咋都不像图论的题竟然用费用流做,将行+列为奇数的点和偶数的点分开,也就是匹配问题,然后把一个点复制四份,分别代表这个点的上下左右接头,如果有 ...

  4. [BZOJ5120]无限之环

    Description 曾经有一款流行的游戏,叫做InfinityLoop,先来简单的介绍一下这个游戏: 游戏在一个n×m的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在方格某些方向的边界的中 ...

  5. 洛谷P4003 无限之环(infinityloop)(网络流,费用流)

    洛谷题目传送门 题目 题目描述 曾经有一款流行的游戏,叫做 Infinity Loop,先来简单的介绍一下这个游戏: 游戏在一个 n ∗ m 的网格状棋盘上进行,其中有些小方格中会有水管,水管可能在格 ...

  6. LOJ2321. 「清华集训 2017」无限之环【费用流】

    LINK 很好的一道网络里题 首先想插头DP的还是出门左转10分代码吧 然后考虑怎么网络流 首先要保证没有漏水 也就是说每个接口一定要有对应的接口 那么发现每个点只有可能和上下左右四个点产生联通关系 ...

  7. bzoj 5120 无限之环 & 洛谷 P4003 —— 费用流(多路增广SPFA)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5120 https://www.luogu.org/problemnew/show/P4003 ...

  8. 洛谷P4003 无限之环(费用流)

    传送门 神仙题啊……不看题解我可能一年都不一定做得出来……FlashHu大佬太强啦 到底是得有怎样的脑回路才能一眼看去就是费用流啊…… 建好图之后套个板子就好了,那么我们着重来讨论一下怎么建图 首先, ...

  9. LOJ 2321 清华集训2017 无限之环 拆点+最小费用最大流

    题面:中文题面,这里不占用篇幅 分析: 看到题面,我就想弃疗…… 但是作为任务题单,还是抄了题解…… 大概就是将每个格子拆点,拆成五个点,上下左右的触点和一个负责连源汇点的点(以下简称本点). 这个这 ...

随机推荐

  1. centos下安装docker,kubelet kubeadm kubectl

    目录 安装docker 安装命令 安装 kubelet kubeadm kubectl 安装命令 安装docker 安装命令 yum install docker -y 启动 systemctl en ...

  2. 弄啥嘞?热爱你的Bug

    有人喜欢创造世界,他们做了开发者:有的人喜欢开发者,他们做了测试员.什么是软件测试?软件测试就是一场本该在用户面前发生的灾难提前在自己面前发生了,这会让他们生出一种救世主的感觉,拯救了用户,也就拯救者 ...

  3. 4. 为HelloWorld添加日志

    回顾 通过上篇内容,我们已经使用flask编写了我们的第一个接口或者说是html页面.我们可以看到,使用flask来编写接口/页面是十分简单的.那么接下来,我们丰富一下上面的例子. 需求 现在的需求来 ...

  4. docker 安装vim

    执行以下命令 apt-get update apt-get install vim

  5. dom学习要点

    Dom操作 1.文本内容操作 - innerText:操作文本 - innerHtml:操作全内容 //innerText标签: <div id='i2' ><a>土味程序员& ...

  6. 基于KVM的H3C云计算平台CAS运维经验

  7. 面向 Web 开发者的 Sublime Text 插件

    Package Control 在 Sublime Text 上大家都用 Package Control 来管理安装插件,所以它是我们要安装的第一个插件,安装方法见这里.关于 Package Cont ...

  8. javascript常用方法和技巧

    浏览器变编辑器 data:text/html, <style type=;right:;bottom:;left:;}</style><div id="e" ...

  9. OO学习第一阶段总结

    前言 虽然之前接触过java,也写过一些1000行左右的程序.可以说面向对象的思想和java的一些基本语法对我来说是没有难度的,但是这学期的面向对象依然给了我一个下马威.这几次的作业每次都很让我头疼. ...

  10. 20172321『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结

    20172321『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结 结对伙伴 学号 :20172324 姓名 :曾程 伙伴第一周博客地址: 对结对伙伴的评价:一个很优秀的同学,在这次项目中 ...