题目链接

\(Description\)

求一棵仙人掌的最大独立集。

\(Solution\)

如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f[x][0]+=max(f[v][0],f[v][1])\ ,\ \ f[x][1]+=f[v][0]\)。

对于环,枚举环的根选不选(BZOJ1040 骑士),单独在上面做个DP即可。

也可以Tarjan+vector,以及建圆方树来方便环的转移(改一下方点f的定义使圆点可以直接转移即可)。

竟然1A啦,这么简单吗

//4704kb	168ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 100000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=5e4+5,M=120010; int n,m,Enum,H[N],nxt[M],to[M],Index,dfn[N],low[N],fa[N],f[N][2],tmp[N][2];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
void DP(int u,int v)
{
tmp[v][0]=f[v][0], tmp[v][1]=f[v][1];//don't choose u
for(int i=fa[v],pre=v; pre!=u; pre=i,i=fa[i])
tmp[i][0]=std::max(tmp[pre][0],tmp[pre][1])+f[i][0],
tmp[i][1]=tmp[pre][0]+f[i][1];
f[u][0]=tmp[u][0]; tmp[v][0]=f[v][0], tmp[v][1]=-87654321;//choose u
for(int i=fa[v],pre=v; pre!=u; pre=i,i=fa[i])
tmp[i][0]=std::max(tmp[pre][0],tmp[pre][1])+f[i][0],
tmp[i][1]=tmp[pre][0]+f[i][1];
f[u][1]=tmp[u][1];
}
void Tarjan(int x)
{
dfn[x]=low[x]=++Index, f[x][0]=0, f[x][1]=1;
for(int v,i=H[x]; i; i=nxt[i])
if(to[i]!=fa[x])
{
if(!dfn[v=to[i]]) fa[v]=x, Tarjan(v), low[x]=std::min(low[x],low[v]);
else low[x]=std::min(low[x],dfn[v]);
if(low[v]>dfn[x]) f[x][0]+=std::max(f[v][0],f[v][1]), f[x][1]+=f[v][0];
}
for(int i=H[x]; i; i=nxt[i])
if(fa[to[i]]!=x&&dfn[to[i]]>dfn[x]) DP(x,to[i]);
} int main()
{
n=read(),m=read();
while(m--) AddEdge(read(),read());
Tarjan(1);
int res=0; for(int i=1; i<=n; ++i) res=std::max(res,std::max(f[i][0],f[i][1]));
printf("%d",res);
return 0;
}

BZOJ.4316.小C的独立集(仙人掌 DP)的更多相关文章

  1. BZOJ 4316: 小C的独立集 仙人掌 + 树形DP

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MB Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. ...

  2. 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 57  Solved: 41[Submit][Status][Discuss] ...

  3. BZOJ 4316: 小C的独立集 解题报告

    4316: 小C的独立集 Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点, ...

  4. BZOJ 4316: 小C的独立集

    4316: 小C的独立集 思路:先将树上的转移做好.然后环上的转移就是强制最上面的的点选或者不选,然后在环上跑一遍转移就可以了. 代码: #pragma GCC optimize(2) #pragma ...

  5. bzoj 4316: 小C的独立集【仙人掌dp】

    参考:https://www.cnblogs.com/clrs97/p/7518696.html 其实和圆方树没什么关系 设f[i][j][k]为i点选/不选,这个环的底选不选 这个底的定义是设u为这 ...

  6. 【刷题】BZOJ 4316 小C的独立集

    Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...

  7. 【BZOJ】4316: 小C的独立集 静态仙人掌

    [题意]给定仙人掌图,求最大独立集(选择最大的点集使得点间无连边).n<=50000,m<=60000. [算法]DFS处理仙人掌图 [题解]参考:[BZOJ]1023: [SHOI200 ...

  8. bzoj 5072 小A的树 —— 树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 由于对于一个子树,固定有 j 个黑点,连通块大小是一个连续的范围: 所以记 f[i][ ...

  9. [BZOJ4316]小C的独立集 仙人掌?

    题目链接 因为xls让我每周模拟一次,然后学习模拟中没有学过的东西.所以就来学圆方树. 本来这道题用不着圆方树,但是圆方树是看yyb的博客学的,他在里面讲一下作为一个引子,所以也来写一下. 首先来Ta ...

随机推荐

  1. 工具_HBuilder工具使用技巧

    https://www.cnblogs.com/xiaohouzai/p/7696152.html

  2. 差分约束系统+(矩阵)思维(H - THE MATRIX PROBLEM HDU - 3666 )

    题目链接:https://cn.vjudge.net/contest/276233#problem/H 题目大意:对于给定的矩阵  每一行除以ai  每一列除以bi 之后 数组的所有元素都还在那个L- ...

  3. Centos7安装 mysql5.6.29 shell脚本

    有很多可以借鉴的地方,故转载: 创建脚本mysql.sh,直接运行sh mysql.sh !/bin/bash if [ -d /software ] ;then cd /software else ...

  4. 生成Word/ATU报表提示 font family not found

    1.先从你本机 C:\Windows\Fonts 拷贝或者网络上下载你想要安装的字体文件(*.ttf文件)到 /usr/share/fonts/chinese/TrueType 目录下(如果系统中没有 ...

  5. oracle11g的冷热备份

    1.冷备份 如果数据库可以正常关闭,而且允许关闭足够长的时间,那么就可以采用冷备份(脱机备份),可以是归档冷备份,也可以是非归档冷备份.其方法是首先关闭数据库,然后备份所有的物理文件,包括数据文件.控 ...

  6. 实现checkebox全选取消操作

    方法一: javascript代码: function checkedChild(obj,index){ var checkBoxs = document.getElementsByName(&quo ...

  7. RobotFramework安装扩展库包autoitlibrary(四)

    Robot Framework扩展库包 http://robotframework.org/#libraries 一,自动化测试PC端程序 1,  安装pywin32(autoitlibrary使用需 ...

  8. redis从入门到放弃 -> 简介&概念

    一.redis简介 Redis是一款开源的.高性能的键-值存储.它常被称作是一款数据结构服务器. 当值支持的主要数据类型为:字符串(strings)类型,括哈希(hashes).列表(lists).集 ...

  9. linux下/var/run目录下.pid文件的作用

    1.pid文件的内容用cat命令查看,可以看到内容只有一行,记录了该进程的ID 2.pid文件的作用防止启动多个进程副本 3.pid文件的原理进程运行后会给.pid文件加一个文件锁,只有获得该锁的进程 ...

  10. 洛谷P2015二叉苹果树

    传送门啦 树形 $ dp $ 入门题,学树形 $ dp $ 的话,可以考虑先做这个题. $ f[i][j] $ 表示在 $ i $ 这棵子树中选 $ j $ 个苹果的最大价值. include #in ...