C - Playing With Stones

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

You and your friend are playing a game in which you and your friend take turns removing stones from piles. Initially there are N piles with a1, a2, a3,..., aN number of stones. On each turn, a player must remove at least one stone from one pile but no more than half of the number of stones in that pile. The player who cannot make any moves is considered lost. For example, if there are three piles with 5, 1 and 2 stones, then the player can take 1 or 2 stones from first pile, no stone from second pile, and only 1 stone from third pile. Note that the player cannot take any stones from the second pile as 1 is more than half of 1 (the size of that pile). Assume that you and your friend play optimally and you play first, determine whether you have a winning move. You are said to have a winning move if after making that move, you can eventually win no matter what your friend does.

Input

The first line of input contains an integer T(T100) denoting the number of testcases. Each testcase begins with an integer N(1N100) the number of piles. The next line contains N integers a1, a2, a3,..., aN(1ai2 * 1018) the number of stones in each pile.

Output

For each testcase, print ``YES" (without quote) if you have a winning move, or ``NO" (without quote) if you don‟t have a winning move.

Sample Input

4
2
4 4
3
1 2 3
3
2 4 6
3
1 2 1

Sample Output

NO
YES
NO
YES
int n;
int main()
{
int t;
scanf("%d",&t);
while (t--){
scanf("%d",&n);
long long cnt=;
while (n--){
long long x;
scanf("%lld",&x);
if (x==) continue;
while (x&) x/=;
cnt^=x/;
}
if (cnt>) printf("YES\n");
else printf("NO\n");
}
return ;
}
												

UVALive 5059 C - Playing With Stones 博弈论Sg函数的更多相关文章

  1. uva1482:Playing With Stones (SG函数)

    题意:有N堆石子,每次可以取一堆的不超过半数的石子,没有可取的为输. 思路:假设只有一堆,手推出来,数量x可以表示为2^p-1形式的必输. 但是没什么用,因为最后要的不是0和1,而是SG函数:所以必输 ...

  2. 【LA5059】Playing With Stones (SG函数)

    题意:有n堆石子,分别有a[i]个.两个游戏者轮流操作,每次可以选一堆,拿走至少一个石子,但不能拿走超过一半的石子. 谁不能拿石子就算输,问先手胜负情况 n<=100,1<=a[i]< ...

  3. 【基础操作】博弈论 / SG 函数详解

    博弈死我了……(话说哪个小学生会玩博弈论提到的这类弱智游戏,还取石子) 先推荐两个文章链接:浅谈算法——博弈论(从零开始的博弈论) 博弈论相关知识及其应用 This article was updat ...

  4. POJ2425 A Chess Game[博弈论 SG函数]

    A Chess Game Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 3917   Accepted: 1596 Desc ...

  5. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  6. [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】

    题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...

  7. [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】

    题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...

  8. 【GZOI2015】石子游戏 博弈论 SG函数

    题目大意 有\(n\)堆石子,两个人可以轮流取石子.每次可以选择一堆石子,做出下列的其中一点操作: 1.移去整堆石子 2.设石子堆中有\(x\)个石子,取出\(y\)堆石子,其中\(1\leq y&l ...

  9. [2016北京集训试题6]魔法游戏-[博弈论-sg函数]

    Description Solution 首先,每个节点上的权值可以等价于该节点上有(它的权的二进制位数+1)个石子,每次可以拿若干个石子但不能不拿. 然后就发现这和NIM游戏很像,就计算sg函数em ...

随机推荐

  1. getattr的使用

    from requests_html import HTMLSession class UrlGenerator(object): def __init__(self, root_url): self ...

  2. Error: No resource found that matches the given name (at 'icon' with value '@mipmap/Icon')

    问题: error: Error: No resource found that matches the given name (at 'icon' with value '@mipmap/Icon' ...

  3. 爬虫基础---HTTP协议理解、网页的基础知识、爬虫的基本原理

    一.HTTP协议的理解 URL和URI 在学习HTTP之前我们需要了解一下URL.URI(精确的说明某资源的位置以及如果去访问它) URL:Universal Resource Locator 统一资 ...

  4. 查看sql语句加锁信息

    问题: 最近使用quartz集群,总是报deadlock问题,所以需要查看一下执行的sql导致的加锁冲突. 步骤: 1.在要测试的库中创建指定表innodb_lock_monitor create t ...

  5. No.11 selenium学习之路之浏览器大小

    通过set_window_size()方法可以设置打开的浏览器大小 maximize_window()方法可以把当前浏览器最大化 例子:

  6. [经典算法题]寻找数组中第K大的数的方法总结

    [经典算法题]寻找数组中第K大的数的方法总结 责任编辑:admin 日期:2012-11-26   字体:[大 中 小] 打印复制链接我要评论   今天看算法分析是,看到一个这样的问题,就是在一堆数据 ...

  7. sql server中分布式查询随笔(链接服务器(sp_addlinkedserver)和远程登录映射(sp_addlinkedsrvlogin)使用小总结)

    由于业务逻辑的多样性,经常得在sql server中查询不同数据库中数据,这就产生了分布式查询的需求 现我将开发中遇到的几种查询总结如下: 1.access版本 --建立连接服务器 EXEC sp_a ...

  8. MySQL学习笔记:delete

    使用 SQL 的 DELETE FROM 命令来删除 MySQL 数据表中的记录. 语法: DELETE FROM table_name [WHERE Clause] 如果没有指定 WHERE 子句, ...

  9. 8VC Venture Cup 2016 - Elimination Round F - Group Projects dp好题

    F - Group Projects 题目大意:给你n个物品, 每个物品有个权值ai, 把它们分成若干组, 总消耗为每组里的最大值减最小值之和. 问你一共有多少种分组方法. 思路:感觉刚看到的时候的想 ...

  10. 【转】 LINUX中IPTABLES和TC对端口的带宽限制 端口限速

    不管是iptables还是tc(traffic control)功能都很强大,都是与网络相关的工具,那么我们就利用这两个工具来对端口进行带宽的限制. 1.使用命令ifconfig查看服务器上的网卡信息 ...