【BZOJ3294】放棋子(动态规划,容斥,组合数学)

题面

BZOJ

洛谷

题解

如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉。

那么我们就可以写出一个\(dp\)

设\(f[i][r][c]\)表示考虑了前\(i\)种颜色,还剩下\(r\)行\(c\)列没被染色。

那么转移的时候枚举一下当前颜色染了\(a\)行\(b\)列转移就好了。

但是问题来了,怎么计算用\(K\)个棋子恰好覆盖\(a\)行\(b\)列的方案数呢?

恰好很不好算,那么我们换一下,至多覆盖了\(a\)行\(b\)列的方案数。

那么这个很容易算出来是\(C_{ab}^{K}\)。

那么我们可以容斥计算恰好覆盖了\(a\)行\(b\)列的方案数。

我们在计算\(a,b\)的时候就已经可以算出来恰好覆盖了\(l,l<a\)行\(r,r<b\)列的方案数,

那么直接拿总数减去不合法的就好了。

接下来就是一个很简单的\(dp\)了,稍微用组合数算一下即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MOD 1000000009
#define MAX 35
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int n,m,c,ans;
int f[MAX][MAX][MAX],a[MAX];
int jc[MAX*MAX],jv[MAX*MAX],inv[MAX*MAX];
int g[MAX][MAX][MAX];
int C(int n,int m){if(m>n)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
n=read();m=read();c=read();
for(int i=1;i<=c;++i)a[i]=read();
jc[0]=inv[0]=inv[1]=jv[0]=1;
for(int i=1;i<=n*m;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=2;i<=n*m;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n*m;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<=c;++i)
for(int j=1;j<=n;++j)
for(int k=1;k<=m;++k)
{
if(j*k<a[i])continue;
g[i][j][k]=C(j*k,a[i]);
for(int l=1;l<=j;++l)
for(int r=1;r<=k;++r)
if(l!=j||r!=k)add(g[i][j][k],MOD-1ll*C(j,l)*C(k,r)%MOD*g[i][l][r]%MOD);
}
f[0][0][0]=1;
for(int i=1;i<=c;++i)
for(int j=1;j<=n;++j)
for(int k=1;k<=m;++k)
for(int a=1;a<=j;++a)
for(int b=1;b<=k;++b)
add(f[i][j][k],1ll*g[i][a][b]*f[i-1][j-a][k-b]%MOD*C(n-j+a,a)%MOD*(C(m-k+b,b))%MOD);
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)add(ans,f[c][i][j]);
printf("%d\n",ans);
return 0;
}

【BZOJ3294】放棋子(动态规划,容斥,组合数学)的更多相关文章

  1. BZOJ 3294: [Cqoi2011]放棋子 计数 + 容斥 + 组合

    比较头疼的计数题. 我们发现,放置一个棋子会使得该棋子所在的1个行和1个列都只能放同种棋子. 定义状态 $f_{i,j,k}$ 表示目前已使用了 $i$ 个行,$j$ 个列,并放置了前 $k$ 种棋子 ...

  2. 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学

    [BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...

  3. 2015 asia xian regional F Color (容斥 + 组合数学)

    2015 asia xian regional F Color (容斥 + 组合数学) 题目链接http://codeforces.com/gym/100548/attachments Descrip ...

  4. BZOJ2839:集合计数(容斥,组合数学)

    Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...

  5. 容斥 + 组合数学 ---Codeforces Round #317 A. Lengthening Sticks

    Lengthening Sticks Problem's Link: http://codeforces.com/contest/571/problem/A Mean: 给出a,b,c,l,要求a+x ...

  6. Gym 100548F Color 给花染色 容斥+组合数学+逆元 铜牌题

    Problem F. ColorDescriptionRecently, Mr. Big recieved n flowers from his fans. He wants to recolor th ...

  7. [CTS2019]随机立方体(容斥+组合数学)

    这题七次方做法显然,但由于我太菜了,想了一会发现也就只会这么多,而且别的毫无头绪.发现直接做不行,那么,容斥! f[i]为至少i个极值的方案,然后这里需要一些辅助变量,a[i]表示选出i个三维坐标均不 ...

  8. 51nod1667-概率好题【容斥,组合数学】

    正题 题目链接:http://www.51nod.com/Challenge/Problem.html#problemId=1667 题目大意 两个人. 第一个人有\(k_1\)个集合,第\(i\)个 ...

  9. JZYZOJ1544 [haoi2016T2]放棋子 错排公式 组合数学 高精度

    http://172.20.6.3/Problem_Show.asp?ID=1544&a=ProbNF 看了题解才意识到原题有错排的性质(开始根本不知道错排是什么). 十本不同的书放在书架上. ...

  10. CF 317 A. Lengthening Sticks(容斥+组合数学)

    传送门:点我 A. Lengthening Sticks  time limit per test        1 second You are given three sticks with po ...

随机推荐

  1. vue组件--通讯录

    简介 在移动端开发中,通讯录是个很常见的需求. 通讯录通常要实现以下功能 首字母导航 滚动到一定位置首字母固定 在线通讯录demo 布局 通讯录是典型的上下两栏布局,上面是header,下面是内容区, ...

  2. Caffe Blob针对图像数据在内存中的组织方式

    Caffe使用Blob结构在CNN网络中存储.传递数据.对于批量2D图像数据,Blob的维度为 图像数量N × 通道数C × 图像高度H × 图像宽度W 显然,在此种场景下,Blob使用4维坐标定位数 ...

  3. Eclipse web项目更改项目名称

    1. 右键工程:Refactor->Rename,更改项目名称: 2. 修改项目目录下:.project文件 <?xml version="1.0" encoding= ...

  4. Datawhale MySQL 训练营 Task1:MySQL 安装与数据库基础

    安装 平台 Windows X64; MySQL: 直接去 MySQL 官网 下载:点击即可安装:安装过程中可能会要求 python3.7; 可以去安装一个 python3.7; 可视化工具:Navi ...

  5. vue 使用ref获取DOM元素和组件引用

    在vue中可以通过ref获取dom元素,并操作它,还可以获取组件里面的数据和方法. HTML部分: <div id="app"> <input type=&quo ...

  6. codeforces 1140E Palindrome-less Arrays

    题目链接:http://codeforces.com/contest/1140/problem/E 题目大意: 如果一个数组的存在一个奇数长的回文就不好. 不是不好的数组是好的. 你可以把-1用1到k ...

  7. python-分叉树枝

    import turtle def draw_branch(length): #绘制右侧树枝 if length >5: if length == 10: turtle.pencolor('gr ...

  8. ubuntu16.04 CUDA, CUDNN 安装

    这次介绍的是使用 tensorflow1.8, cuda9.0, cudnn7.0的版本 https://developer.nvidia.com/cuda-90-download-archive 下 ...

  9. asp.net core如何修改程序监听的端口

    asp.net core 默认监听的5000和5001端口,要修改为其他端口有几种方法. 1.硬编码.优点是直观,缺点是每次修改端口都得重新编译程序. public class Program { p ...

  10. OO终章--总结博客

    一.测试与正确性论证的比较 从方法上看,测试是使用大量测试样例来覆盖测试代码,从而能够检测代码的实现是否正确,功能是否完善.而正确性论证是使用代码的规格和逻辑进行严密的推论和证明,从而验证代码的实现正 ...