Description

  Give you a lot of positive integers, just to find out how many prime numbers there are.

Input

  There are a lot of cases. In each case, there is an integer N representing the number of integers to find. Each integer won’t exceed 32-bit signed integer, and each of them won’t be less than 2.

Output

  For each case, print the number of prime numbers you have found out.

Sample Input

3
2 3 4

Sample Output

2

【题目简述】输入一个n和n个int32整数,询问其中有多少个质数,有多组数据

【题解】

有的时候我们需要快速判断一个数是不是质数

这时候我们需要使用miller-rabin算法

首先,根据费马小定理

我们认识到若p是质数

则a^p=a(mod p)

于是我们使用一个推广的结论

“记n=a*2^b,在[1,n)中随机选取一个整数x,如果x^a ≡1或x^(a*2^i) ≡-1(其中0<=i<b),那么我们认为n是质数。”——ysy

如果这样判断,我们会发现有1/4的概率出错

我们多判断几次即可

除非你是宇宙无敌非洲人

#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
#include<set>
#define il inline
#define re register
using namespace std;
typedef long long ll;
int T;
ll n,ans=,a,b;
il int ran(){
return rand()*rand()+rand();
}
il ll pow(ll base,ll pow){
ll ans=;
for(;pow;pow>>=){
if(pow&) ans=ans*base%n;
base=base*base%n;
}
return ans;
}
il bool chk(){
ll x=ran()%(n-)+,now=pow(x,a);
if(now==) return true;
for(int i=;i<b;i++){
if(now==n-) return true;
now=now*now%n;
}
return false;
}
il bool isprime(){
a=n-;b=;
while(a%==){
a/=;b++;
}
for(int i=;i<=;i++)
if(!chk()) return false;
return true;
}
il void init(){
srand(T);ans=;
for(int i=;i<=T;i++){
cin>>n;
ans+=isprime();
}
cout<<ans<<endl;
}
int main(){
while(scanf("%d",&T)!=EOF){
init();
}
return ;
}

hdu2138 Miller_Rabin的更多相关文章

  1. HDU2138 素数判定

    HDU2138 给定N个32位大于等于2的正整数 输出其中素数的个数 用Miller Rabin 素数判定法 效率很高 数学证明比较复杂,略过, 会使用这个接口即可. #include<iost ...

  2. hdu2138 How many prime numbers 米勒测试

    hdu2138 How many prime numbers #include <bits/stdc++.h> using namespace std; typedef long long ...

  3. Miller_Rabin素数测试

    #include<iostream> #include<cmath> #include<cstdio> #include<cstring> #inclu ...

  4. HDU2138 & 米勒拉宾模板

    题意: 给出n个数,判断它是不是素数. SOL: 米勒拉宾裸题,思想方法略懂,并不能完全理解,所以实现只能靠背模板.... 好在不是很长... Code: /*==================== ...

  5. 【数论】Miller_Rabin

    Miller_Rabin素数测试     Miller_Rabin判断单个素数的方法运用了费马小定理,可以说非常之快了.     Miller_Rabin曾经被称作“黑科技”,但是根据费马小定理其实完 ...

  6. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  7. 优化后的二次测试Miller_Rabin素性测试算法

    ll random(ll n) { return (ll)((double)rand()/RAND_MAX*n + 0.5); } ll pow_mod(ll a,ll p,ll n) { ) ; l ...

  8. Miller_Rabin (米勒-拉宾) 素性测试

    之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...

  9. HDU-3864 D_num Miller_Rabin和Pollard_rho

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3864 题意:给定一个数n,求n的因子只有四个的情况. Miller_Rabin和Pollard_rho ...

随机推荐

  1. beego跨域请求配置

    不说废话 在main函数前加入如下代码 func init() { //跨域设置 var FilterGateWay = func(ctx *context.Context) {ctx.Respons ...

  2. VOT工具操作指南(踩过的坑)

    为了运行在VOT里DaSiamRPN,配置了很久环境,我电脑的配置是Ubuntu16.04+MatlabR2018a+pytorch0.3. 下面是一些从网上整理的操作步骤: 1.首先是工具箱的下载: ...

  3. 使用C#采集Shibor数据到Excel

    对Shibor的变化一直以来比较关注,正好最近学习了对html数据处理的一些知识,就打算拿来采集一些我需要的Shibor数据. 使用到的库 HttpAgilityPack 一个非常不错的html解析工 ...

  4. Doing Homework again:贪心+结构体sort

    Doing Homework again Problem Description Ignatius has just come back school from the 30th ACM/ICPC. ...

  5. NO.4:自学python之路------内置方法、装饰器、迭代器

    引言 是时候开始新的Python学习了,最近要考英语,可能不会周更,但是尽量吧. 正文 内置方法 Python提供给了使用者很多内置方法,可以便于编程使用.这里就来挑选其中大部分的内置方法进行解释其用 ...

  6. 凡事不求甚解,遇事必定抓瞎——PHP开发Apache服务器配置备忘录

    照此配置流程,绝对一路畅通,可保无虞. 昨天弄了个PHP小程序,想在本地跑一下测试,可是工作电脑没有安装环境,于是下载了一个wamp,一路畅通,Apache.Mysql.PHP就全有了.启动wamp服 ...

  7. Notes of Daily Scrum Meeting(11.8)

    Notes of Daily Scrum Meeting(11.8) 预备中开始写代码的第一天,因为大家对Android编程的熟悉程度还是不够,所以工程进行的非常缓慢,有四名队员 开始编写自己的任务, ...

  8. 每日scrum(1)

    今天又正式开始了第二个冲刺周期,计划十天,主要需要改进的地方包括UI界面,还有一些细节的把握. 今天出现的主要问题有:在讨论UI界面风格的时候,小组内部意见不统一,对UI界面的创作流程不熟悉,以及难度 ...

  9. Chapter 11 软件演化

    软件一直在不断地演化发展,人们通常通过软件维护和软件再工程解决软件的缺陷.软件维护可以分为改正性维护.适应性维护和完善性维护几种类型.软件维护受开发过程影响大.软件维护困难大.软件维护成本高.软件维护 ...

  10. arcgis 10.3中文版安装教程、配置及常见问题(百度的有些错误)

    参考的: 1.http://wenku.baidu.com/link?url=W-wo_lEMvzHxF19w91X7H0WDjyCQ16DjGu4ViaZ4-eVPr0NTU-LrZTPK1oyzT ...