hdu2138 Miller_Rabin
Description
Input
Output
Sample Input
3
2 3 4
Sample Output
2
【题目简述】输入一个n和n个int32整数,询问其中有多少个质数,有多组数据
【题解】
有的时候我们需要快速判断一个数是不是质数
这时候我们需要使用miller-rabin算法
首先,根据费马小定理
我们认识到若p是质数
则a^p=a(mod p)
于是我们使用一个推广的结论
“记n=a*2^b,在[1,n)中随机选取一个整数x,如果x^a ≡1或x^(a*2^i) ≡-1(其中0<=i<b),那么我们认为n是质数。”——ysy
如果这样判断,我们会发现有1/4的概率出错
我们多判断几次即可
除非你是宇宙无敌非洲人
#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
#include<set>
#define il inline
#define re register
using namespace std;
typedef long long ll;
int T;
ll n,ans=,a,b;
il int ran(){
return rand()*rand()+rand();
}
il ll pow(ll base,ll pow){
ll ans=;
for(;pow;pow>>=){
if(pow&) ans=ans*base%n;
base=base*base%n;
}
return ans;
}
il bool chk(){
ll x=ran()%(n-)+,now=pow(x,a);
if(now==) return true;
for(int i=;i<b;i++){
if(now==n-) return true;
now=now*now%n;
}
return false;
}
il bool isprime(){
a=n-;b=;
while(a%==){
a/=;b++;
}
for(int i=;i<=;i++)
if(!chk()) return false;
return true;
}
il void init(){
srand(T);ans=;
for(int i=;i<=T;i++){
cin>>n;
ans+=isprime();
}
cout<<ans<<endl;
}
int main(){
while(scanf("%d",&T)!=EOF){
init();
}
return ;
}
hdu2138 Miller_Rabin的更多相关文章
- HDU2138 素数判定
HDU2138 给定N个32位大于等于2的正整数 输出其中素数的个数 用Miller Rabin 素数判定法 效率很高 数学证明比较复杂,略过, 会使用这个接口即可. #include<iost ...
- hdu2138 How many prime numbers 米勒测试
hdu2138 How many prime numbers #include <bits/stdc++.h> using namespace std; typedef long long ...
- Miller_Rabin素数测试
#include<iostream> #include<cmath> #include<cstdio> #include<cstring> #inclu ...
- HDU2138 & 米勒拉宾模板
题意: 给出n个数,判断它是不是素数. SOL: 米勒拉宾裸题,思想方法略懂,并不能完全理解,所以实现只能靠背模板.... 好在不是很长... Code: /*==================== ...
- 【数论】Miller_Rabin
Miller_Rabin素数测试 Miller_Rabin判断单个素数的方法运用了费马小定理,可以说非常之快了. Miller_Rabin曾经被称作“黑科技”,但是根据费马小定理其实完 ...
- 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29046 Accepted: 7342 Case ...
- 优化后的二次测试Miller_Rabin素性测试算法
ll random(ll n) { return (ll)((double)rand()/RAND_MAX*n + 0.5); } ll pow_mod(ll a,ll p,ll n) { ) ; l ...
- Miller_Rabin (米勒-拉宾) 素性测试
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...
- HDU-3864 D_num Miller_Rabin和Pollard_rho
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3864 题意:给定一个数n,求n的因子只有四个的情况. Miller_Rabin和Pollard_rho ...
随机推荐
- [学习笔记]SiftGPU入门
当有读者看到我这篇SiftGPU入门的学习笔记时,相信你已经读过了高博那篇<SLAM拾萃:SiftGPU>,那篇文章写于16年,已经过去两年的时间.在我尝试配置SiftGPU的环境时,遇到 ...
- Android Library开发注意事项
Android Library开发注意事项 App Module添加依赖Android Library时可以设置library的优先级, 在编译时,app按照library从低到高的优先级依次与每个l ...
- TP里where的查询方式,比如or应该怎么写?
这应该是个基础..只是我没有系统的学TP,所以用到了临时查了手册. 正常来说,thinkphp里的查询方式是: ThinkPHP可以支持直接使用字符串作为查询条件,但是大多数情况推荐使用数组或者对象来 ...
- IP地址相关知识
IP地址基本概念 ...
- Hyperledger Fabric 1.2 --- Chaincode Operator 解读和测试(二)
本文接上一节是测试部分 搭建一个模拟测试环境 作者将fabric release1.2工程中的 example-e2e进行了改造来进行本次实验: (1)首先我们将examples/e2e_cli/sc ...
- windows c++如何使窗口动态改变位置
在windows软件中,经常会碰到一个功能:鼠标hover在某个地方时会出现窗口,有时候这个窗口的位置是会动态调整的. 熟悉使用windows API,理解windows中虚拟坐标.工作区坐标.屏幕坐 ...
- POJ 3164 Sunscreen (挑战程序设计竞赛的练习题)
题目:https://vjudge.net/problem/POJ-3614 思路参考这个:https://blog.csdn.net/qq_25576697/article/details/7657 ...
- nodejs加载模块心得,mongoose的继承,schematype的mixd介绍
1. require("xxx")可以是原生模块, 也可以是根目录“/node_modules”下的某个模块 2. 多个模块的package.json使用同一个相同模块的时候,将改 ...
- css修改input自动提示的黄色背景
css修改input自动提示的黄色背景 input:-webkit-autofill { background-color: #FAFFBD; background-image: none; -web ...
- js 基础拓展
1.关于 try catch 的用法 <body> <div>请输出一个 5 到 10 之间的数字:</div> <input id="demo&q ...