欧拉筛法可以以\(O(n)\)的时间,空间复杂度求出\(1-n\)范围内的所有质数. 其核心思想是每个合数仅会被其最小的质因数筛去一次.
See this website for more details.

```cpp
#include <iostream>
#include <cstdio>
using namespace std;

const int MAXN(1000001);
int n_prime(0);
bool not_prime[MAXN];
int prime[80000];
/*
  There are 78498 prime numbers in the interval [1, 1000000].
  It's secure to use floor(x / ln(x) * 1.14) as the size of prime array.
  See the website given above for details.
*/

int main()
{
    not_prime[1] = true;
    for (int i = 2; i < MAXN; ++i) {
        !not_prime[i] && (prime[n_prime++] = i);
        for (int j = 0, t; j < n_prime && (t = i * prime[j]) < MAXN; ++j) {
            not_prime[t] = true;
            if (!(i % prime[j]))
                break;
        }
    }
    return 0;
}

对于待求区间内的任意合数\(n\), 其必定存在一个最小质因数\(p\). 设\(m = n / p\), 显然, \(m < n\), 且\(m\)的最小质因数大于等于\(p\). 因此, 在not_prime[n]被赋值为true之前, 不会出现m % prime[j] == 0的情况, 也就不会触发跳出循环的break语句. 所以, 待求区间内的所有合数都一定会被筛除.

设\(q\)为\(n\)的质因数, 且\(q \ne p\). 令\(k = n / q\). 因为\(p | n\), 且\(p < q\), 所以当外层循环循环至i = k时, 内层循环一定会在循环至prime[j] == q之前触发i % p == 0而导致中断. 因此, 每个合数仅会被其最小的质因数筛去一次, 也就保证了该算法\(O(n)\)的复杂度.

欧拉筛——$O(n)$复杂度的质数筛法的更多相关文章

  1. hdu3572线性欧拉筛

    用线性筛来筛,复杂度O(n) #include<bits/stdc++.h> #include<ext/rope> #define fi first #define se se ...

  2. 【BZOJ 2190】【SDOI 2008】仪仗队 欧拉筛

    欧拉筛模板题 #include<cstdio> using namespace std; const int N=40003; int num=0,prime[N],phi[N]; boo ...

  3. 【BZOJ2818】Gcd 欧拉筛

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  4. 素数筛&&欧拉筛

    折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...

  5. pku-2909 (欧拉筛)

    题意:哥德巴赫猜想.问一个大于2的偶数能被几对素数对相加. 思路:欧拉筛,因为在n<215,在3万多,一个欧拉筛得时间差不多4*104, 那么筛出来的素数有4千多个,那么两两组合直接打表,时间复 ...

  6. UVA12995 Farey Sequence [欧拉函数,欧拉筛]

    洛谷传送门 Farey Sequence (格式太难调,题面就不放了) 分析: 实际上求分数个数就是个幌子,观察可以得到,所求的就是$\sum^n_{i=2}\phi (i)$,所以直接欧拉筛+前缀和 ...

  7. Bi-shoe and Phi-shoe(欧拉筛)

    Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular co ...

  8. POJ3090 Visible Lattice Points 欧拉筛

    题目大意:给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 线y=x和坐标轴上的点都被(1,0)(0,1)(1,1)挡住了.除这三个钉子外,如果一个点(x,y)不互质,则 ...

  9. PY个欧拉筛

    大数据用 python? 速度感人 突然来了一发 python 欧拉筛,调了半天之后输入 1e7 过了几秒钟之后出解了,PY 果然神速 没学过 PY 的小同学可以当做 VB 的阅读程序,反正语言隔离都 ...

随机推荐

  1. Day10 API

    String类 String是不可变类:值一旦确定了,就不会更改. public static void main(String[] args) { String s1 = "hello&q ...

  2. 20155314 2016-2017-2 《Java程序设计》第10周学习总结

    20155314 2016-2017-2 <Java程序设计>第10周学习总结 教材学习内容总结 了解计算机网络基础 掌握Java Socket编程 理解混合密码系统 掌握Java 密码技 ...

  3. c++——const关键字

    1 const基础知识(用法.含义.好处) int main() { const int a; int const b; const int *c; int * const d; const int ...

  4. 文件上传 python

    def upload(): r = requests.post( url='http://upload.renren.com/upload.fcgi?pagetype=addpublishersing ...

  5. 移动端适配之sprite雪碧图背景定位

    移动端适配一般我会使用rem进行适配,大致操作就是按照一定尺寸设计稿进行制作,最后将所有px值转换为rem,但是一些手机背景精灵图(cssSprite)就会出现一些误差(1px左右),如果公司要求不高 ...

  6. (转)Python学习笔记系列——Python是一种纯粹的语言

    此文出自知乎灵剑,原文传送门:https://zhuanlan.zhihu.com/p/23926957. 在摸索适合自己的语言学习方法,看到一篇好文章,转之,侵删. Python的语法范式相当多.知 ...

  7. Debian 8 安装 Qt5 和 go-qml

    一.安装相关依赖 ~ ᐅ sudo apt-get install build-essential libgl1-mesa-dev ~ ᐅ sudo apt-get install qt5-defau ...

  8. 新手搭建 x-boot 编译环境笔记

    1.需要先搭建交叉编译环境,即制作交叉编译工具链,这个过程比较复杂,所以我在这里使用别人做好的交叉编译工具链. 2018年8月27日15:03:37   2.X-boot 源码github地址:htt ...

  9. 20155307《网络对抗》PC平台逆向破解(二)

    20155307<网络对抗>PC平台逆向破解(二) shellcode注入 什么是shellcode? shellcode是一段代码,溢出后,执行这段代码能开启系统shell. 前期准备- ...

  10. 牛客练习赛31 D 最小相似度

    最小相似度 链接 分析: 转化为求1的个数,这样两个串不同的位置的个数就是1的个数.那么对于一个二进制串x,它的贡献就是max{x与s[i]异或后0的个数}=>max{m-x与s[i]异或后1的 ...