ZH奶酪:【阅读笔记】Deep Learning, NLP, and Representations
中文译文:深度学习、自然语言处理和表征方法
http://blog.jobbole.com/77709/
英文原文:Deep Learning, NLP, and Representations
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
总结:
这篇文章中主要提到了单层神经网络,单词嵌入(word embeddings),表征这几个概念,结合具体的实例,写的是通俗易懂,在引用参考文献的位置都给出了对应的链接,一些参考文献中的工作还是挺有意思的。
关于单层神经网络,介绍的浅显易懂,把神经网络比作查询表,很直观。
关于单词嵌入,文中介绍的意思是把一个词转换为一个多维向量,还用t-SNE工具直观的给出了单词嵌入空间的图,加上表格中的例子,更加易懂了。比较有意思的就是相同的词在单词嵌入空间中的距离是很近的,这个特点很有利用价值,利用这一点,提到了一些具体的应用场景,例如语法错误检查,性别类中不同代词(男-女,叔叔-阿姨,国王-王后等)之间的距离也是很相似的。关于这些应用,原文的作者的评价是,这些都是在研究方法的过程中所得的副产品。
关于表征representation,单词嵌入应该就算是一种吧,文中重点介绍了共同表征/共享嵌入(shared representation),将多个不同空间的嵌入信息映射到同一个空间,并介绍了两个很好的应用场景——双语单词嵌入和图像-文字嵌入。
双语单词嵌入,把两个语言中的单词嵌入空间用图像直观的看的话,形状是相似的,相似的词在图像中所处的位置是临近的。
图像-文字嵌入,也是相同概念的信息比较接近,例如猫的图像距离文字“猫”就很近,汽车的图像距离“汽车”就很近。这里引用了斯坦福一个小组和谷歌一个小组的工作,感觉挺有意思。
最后介绍了递归神经网络以及为什么适用于NLP。
整体来看,这篇文章更像是一篇不错的科普文章,个人认为读完之后还是有收获的,尤其是Word Embedding这个概念。
昨天搜了一下关于深度学习的相关博客,感觉很有难度。
感觉自己还是只知其一不知其二,不知道怎么在NLP中使用DL。
下面是英文原文中一些个人认为不错的概念和句子。
1:It’s true, essentially, because the hidden layer can be used as a lookup table.
2:word embeddings;
3:It seems natural for a network to make words with similar meanings have similar vectors.
4:You’ve seen all the words that you understand before, but you haven’t seen all the sentences that you understand before. So too with neural networks.
5:Word embeddings exhibit an even more remarkable property: analogies between words seem to be encoded in the difference vectors between words.
6:This general tactic – learning a good representation on a task A and then using it on a task B – is one of the major tricks in the Deep Learning toolbox. It goes by different names depending on the details: pretraining, transfer learning, and multi-task learning. One of the great strengths of this approach is that it allows the representation to learn from more than one kind of data.
There’s a counterpart to this trick. Instead of learning a way to represent one kind of data and using it to perform multiple kinds of tasks, we can learn a way to map multiple kinds of data into a single representation!
7:Shared Representations
(1)Bilingual Word Embeddings;
(2)Embed images and words in a single representation;
8:By merging sequences of words, A takes us from representing words to representing phrases or even representing whole sentences! And because we can merge together different numbers of words, we don’t have to have a fixed number of inputs.
ZH奶酪:【阅读笔记】Deep Learning, NLP, and Representations的更多相关文章
- (Deep) Neural Networks (Deep Learning) , NLP and Text Mining
(Deep) Neural Networks (Deep Learning) , NLP and Text Mining 最近翻了一下关于Deep Learning 或者 普通的Neural Netw ...
- [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- 深度学习阅读列表 Deep Learning Reading List
Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfe ...
- 深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes
来自:CVPR 2014 作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predic ...
- 阅读笔记Multi-task Learning for Stock Selection [NIPS1996]
Multi-task Learning for Stock Selection Joumana Ghosn and Yoshua Bengio 摘要 用人工神经网络预测未来回报以便于做出对应的金融决 ...
- (Stanford CS224d) Deep Learning and NLP课程笔记(一):Deep NLP
Stanford大学在2015年开设了一门Deep Learning for Natural Language Processing的课程,广受好评.并在2016年春季再次开课.我将开始这门课程的学习 ...
- Deep Learning for Natural Language Processing1
Focus, Follow, and Forward Stanford CS224d 课程笔记 Lecture1 Stanford CS224d 课程笔记 Lecture1 Stanford大学在20 ...
- Rolling in the Deep (Learning)
Rolling in the Deep (Learning) Deep Learning has been getting a lot of press lately, and is one of t ...
随机推荐
- Codeforces Round #279 (Div. 2) A. Team Olympiad 水题
#include<stdio.h> #include<iostream> #include<memory.h> #include<math.h> usi ...
- offset大家族(一)
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- BrowserRouter和HashRouter的区别
BrowserRouter: 原理是H5的history API,IE9及以下不兼容,需要由web server支持,在web client这边window.location.pathname被rea ...
- POJ 2104 && POJ 2761 (静态区间第k大,主席树)
查询区间第K大,而且没有修改. 使用划分树是可以做的. 作为主席树的入门题,感觉太神奇了,Orz /* *********************************************** ...
- PIC JDM Prototype Programmer 1001
In need of a programmer for PIC micro controllers I decided to build my own one. This programmer has ...
- hdu1238 Substrings (暴力)
http://acm.hdu.edu.cn/showproblem.php?pid=1238 Substrings Time Limit : 2000/1000ms (Java/Other) Me ...
- gcc 内联汇编
http://www.cnblogs.com/zhuyp1015/archive/2012/05/01/2478099.html
- TCP Socket的一些行为
几个重要的结论: 1. read总是在接收缓冲区有数据时立即返回,而不是等到给定的read buffer填满时返回. 只有当receive buffer为空时,blocking模式才会等待,而nonb ...
- org.springframework.jdbc.CannotGetJdbcConnectionException: Could not get JDBC Connection
org.springframework.jdbc.CannotGetJdbcConnectionException: Could not get JDBC Connection 这个问题困扰许久,许久 ...
- hashcode(),equal()方法深入解析
首先,想要明白hashCode的作用,必须要先知道Java中的集合. 总的来说,Java中的集合(Collection)有两类,一类是List,再有一类是Set. 前者集合内的元素是有序的,元素可以重 ...