【LOJ】 #2665. 「NOI2013」树的计数
题解
我们统计深度对于bfs序统计,树结构出现分歧的地方必然是BFS序的最后一段,这个最后一段同时还得是dfs序上连续的一段
如果不是bfs序的最后一段,那么必然下一层会有节点,如果树结构分歧了,那么dfs序是不一样的
如果不是dfs序上连续的一段,如果分歧那么bfs序会改变。。。
好的,知道了这两点,这题就非常可做了
我们记录一下u点在dfs序中的位置和bfs序中的位置,从前往后扫bfs序
假如u在BFS序中前一个点是v,如果v的dfs序在u的后面,说明换了一层,深度+1
如果v的dfs序正好是u的前一个,看看维护的那段连续区间长度为L,从后往前数L个点是不是u,如果是的话,那么u可在同层,可作为v的儿子,各占一半,深度+0.5
代码
#include <bits/stdc++.h>
//#define ivorysi
#define enter putchar('\n')
#define space putchar(' ')
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define eps 1e-8
#define mo 974711
#define MAXN 200005
#define pii pair<int,int>
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N;
int a[MAXN],b[MAXN],posa[MAXN],posb[MAXN],L,R;
bool vis[MAXN];
db ans = 2.0;
void Solve() {
read(N);
if(N == 1) {out(1);enter;return;}
for(int i = 1 ; i <= N ; ++i) read(a[i]),posa[a[i]] = i;
for(int i = 1 ; i <= N ; ++i) read(b[i]),posb[b[i]] = i;
vis[1] = vis[2] = 1;
L = 2,R = N + 1;
for(int i = 3 ; i <= N ; ++i) {
if(posa[b[i]] <= posa[b[i - 1]]) ans += 1;
else if(posa[b[i]] == posa[b[i - 1]] + 1) {
if(N - (R - L - 1) + 1 == i) ans += 0.5;
}
vis[posa[b[i]]] = 1;
while(vis[L + 1]) ++L;
while(vis[R - 1]) --R;
}
printf("%.3lf\n",ans);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
今天真是……比昨天还效率低下……
【LOJ】 #2665. 「NOI2013」树的计数的更多相关文章
- loj#2665. 「NOI2013」树的计数
目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...
- 「NOI2013」树的计数 解题报告
「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...
- LOJ 2664. 「NOI2013」向量内积 解题报告
#2664. 「NOI2013」向量内积 两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\) 与 \(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权 ...
- LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)
题意 LOJ #2359. 「NOIP2016」天天爱跑步 题解 考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的 ...
- Loj #2570. 「ZJOI2017」线段树
Loj #2570. 「ZJOI2017」线段树 题目描述 线段树是九条可怜很喜欢的一个数据结构,它拥有着简单的结构.优秀的复杂度与强大的功能,因此可怜曾经花了很长时间研究线段树的一些性质. 最近可怜 ...
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
随机推荐
- python中的协程并发
python asyncio 网络模型有很多中,为了实现高并发也有很多方案,多线程,多进程.无论多线程和多进程,IO的调度更多取决于系统,而协程的方式,调度来自用户,用户可以在函数中yield一个状态 ...
- Java基础-异常(Exception)处理
Java基础-异常(Exception)处理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.异常的概述 什么是异常?Java代码在运行时期发生的问题就是异常.在Java中,把异 ...
- Node.js 被分叉出一个项目 — Ayo.js,肿么了
(注:ayo.js叉从Node.js.目前,大量的文档仍然指向Node.js库.) ayo.js是一个JavaScript运行时建立在Chrome的V8 JavaScript引擎.ayo.js使用事件 ...
- IOS TableView滑动不灵敏问题
TableView的默认的不常用的属性,我们尽量不要去改,如下面标注的几个
- 关于Linux用户名
1.创建/删除/修改用户名 useradd 选项 用户名其中各选项含义如下: 代码:-c comment 指定一段注释性描述.-d 目录 指定用户主目录,如果此目录不存在,则同时使用-m选项,可以创建 ...
- Shell记录-Shell脚本基础(六)
watch是一个非常实用的命令,基本所有的Linux发行版都带有这个小工具,如同名字一样,watch可以帮你监测一个命令的运行结果,省得你一遍遍的手动运行. 1.命令格式 watch[参数][命令] ...
- yum安装_yum命令的相关操作
2017年1月11日, 星期三 yum安装的四种方式 一.默认:从国外下载 二.国内:从阿里获取 http://mirrors.aliyun.com 1. cd /etc/yum.repos.d 2 ...
- Mongodb开启远程连接并认证
环境: Mongodb版本:3.4.6 步骤: 1. mongo创建管理员: 在mongo shell下: use admin db.createUser( { user: "testus ...
- 有用的Javascript,长期更新...
1,点击目标区域以外隐藏,运用场景:点击遮罩层,弹层关闭. // 点击目标区域以外隐藏 $(document).on("click", function (event) { var ...
- Python排序算法之直接插入排序
插入排序的主要思想是每次取一个列表元素与列表中已经排序好的列表段进行比较,然后插入从而得到新的排序好的列表段,最终获得排序好的列表. 比如,待排序列表为[49,38,65,97,76,13,27,49 ...