题解

我们统计深度对于bfs序统计,树结构出现分歧的地方必然是BFS序的最后一段,这个最后一段同时还得是dfs序上连续的一段

如果不是bfs序的最后一段,那么必然下一层会有节点,如果树结构分歧了,那么dfs序是不一样的

如果不是dfs序上连续的一段,如果分歧那么bfs序会改变。。。

好的,知道了这两点,这题就非常可做了

我们记录一下u点在dfs序中的位置和bfs序中的位置,从前往后扫bfs序

假如u在BFS序中前一个点是v,如果v的dfs序在u的后面,说明换了一层,深度+1

如果v的dfs序正好是u的前一个,看看维护的那段连续区间长度为L,从后往前数L个点是不是u,如果是的话,那么u可在同层,可作为v的儿子,各占一半,深度+0.5

代码

#include <bits/stdc++.h>
//#define ivorysi
#define enter putchar('\n')
#define space putchar(' ')
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define eps 1e-8
#define mo 974711
#define MAXN 200005
#define pii pair<int,int>
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N;
int a[MAXN],b[MAXN],posa[MAXN],posb[MAXN],L,R;
bool vis[MAXN];
db ans = 2.0;
void Solve() {
read(N);
if(N == 1) {out(1);enter;return;}
for(int i = 1 ; i <= N ; ++i) read(a[i]),posa[a[i]] = i;
for(int i = 1 ; i <= N ; ++i) read(b[i]),posb[b[i]] = i;
vis[1] = vis[2] = 1;
L = 2,R = N + 1;
for(int i = 3 ; i <= N ; ++i) {
if(posa[b[i]] <= posa[b[i - 1]]) ans += 1;
else if(posa[b[i]] == posa[b[i - 1]] + 1) {
if(N - (R - L - 1) + 1 == i) ans += 0.5;
}
vis[posa[b[i]]] = 1;
while(vis[L + 1]) ++L;
while(vis[R - 1]) --R;
}
printf("%.3lf\n",ans);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

今天真是……比昨天还效率低下……

【LOJ】 #2665. 「NOI2013」树的计数的更多相关文章

  1. loj#2665. 「NOI2013」树的计数

    目录 题目链接 题解 代码 题目链接 loj#2665. 「NOI2013」树的计数 题解 求树高的期望 对bfs序分层 考虑同时符合dfs和bfs序的树满足什么条件 第一个点要强制分层 对于bfs序 ...

  2. 「NOI2013」树的计数 解题报告

    「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...

  3. LOJ 2664. 「NOI2013」向量内积 解题报告

    #2664. 「NOI2013」向量内积 两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\) 与 \(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权 ...

  4. LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)

    题意 LOJ #2359. 「NOIP2016」天天爱跑步 题解 考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的 ...

  5. Loj #2570. 「ZJOI2017」线段树

    Loj #2570. 「ZJOI2017」线段树 题目描述 线段树是九条可怜很喜欢的一个数据结构,它拥有着简单的结构.优秀的复杂度与强大的功能,因此可怜曾经花了很长时间研究线段树的一些性质. 最近可怜 ...

  6. loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点

    loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. Loj #3056. 「HNOI2019」多边形

    Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...

  9. Loj #3055. 「HNOI2019」JOJO

    Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...

随机推荐

  1. Hadoop基础-HDFS的API实现增删改查

    Hadoop基础-HDFS的API实现增删改查 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客开发IDE使用的是Idea,如果没有安装Idea软件的可以去下载安装,如何安装 ...

  2. 安装lsb_release

    lsb_release命令用来查看当前系统的发行版信息(prints certain LSB (Linux Standard Base) and Distribution information.). ...

  3. IIS Media Service: Channel 小结

    IIS Media Service 对Channel的Schema可以在浏览器中输入http://{0}:{1}/services/smoothstreaming/publishingpoints.i ...

  4. [整理]C语言中的static静态对象

    1.说明外部对象(静态外部变量和静态函数)    (1)static 用于说明外部变量或函数,使该对象的作用域限定为被编译原文件的剩余部分,即从对象说明开始到所在源文件的结束部分:    (2)被st ...

  5. 连接mysql提示Establishing SSL connection without server's identity verification is not recommended错误

    Establishing SSL connection without server's identity verification is not recommended. According to ...

  6. hdu 5438 Ponds(长春网络赛 拓扑+bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5438 Ponds Time Limit: 1500/1000 MS (Java/Others)     ...

  7. [转]编译防火墙——C++的Pimpl惯用法解析

    impl(pointer to implementation, 指向实现的指针)是一种常用的,用来对“类的接口与实现”进行解耦的方法.这个技巧可以避免在头文件中暴露私有细节(见下图1),因此是促进AP ...

  8. Dream------Hadoop--Hadoop HA QJM (Quorum Journal Manager)

    In a typical HA cluster, two separate machines are configured as NameNodes. At any point in time, ex ...

  9. openlayers常用操作

    1.坐标转换 根据当前坐标系与目标坐标系进行转换ol.proj.transform(coordinate, source, destination);  //coordinate:数组:source: ...

  10. 缓存数据库-redis(订阅发布)

    一:Redis 发布订阅 Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息. Redis 客户端可以订阅任意数量的频道. 下图展示了频道 c ...