Jedis路由key的算法剥离
在Redis集群中,会有很多个分片,如果此时利用Jedis来操作此Redis集群,那么他会把数据路由到不到的分片上。而且如果动态的往集群中增加分片,也不会影响Jedis的功能。究竟是怎么做到的呢?
由于最近公司要集中迁移redis集群,也就是把旧集群的数据迁移到Redis Cluster中,就需要我们自己来整理数据。刚好我这里有个库存热点数据,我们叫做A吧,这个A在Redis集群中,每个分片上都有数据。比如,Redis集群有4个片,而我总库存量为1000,那么会在4个片上放上Key A,每个A中库存量为250.
新的Redis cluster,为了防止热点库存问题,也就申请了4个cluster,每个cluster相当于之前的一个分片。数据在写入的时候,每个cluster会写一个key A,库存量为250.
现在问题来了,有一些Key,比如说B,在原来的Redis集群中,是利用Jedis路由来导向某一片写入的,假设这里写入的是第3片。如果迁移到新的4个Redis cluster中,势必需要写到第三个Redis Cluster中。因为数据迁移,肯定是第一片redis数据迁移到第一个Cluster,第二片redis数据迁移到第二个Cluster,以此类推。
所以这里需要我们来实现和Jedis一样的路由算法,按照Jedis提供的类,我们实现如下:
首先,定义好ShardNode,继承自Jedis的ShardInfo:
public class ShardNode implements ShardInfo { public ShardNode(String index, Cluster cluster) {
this.index = index;
this.cluster = cluster;
} private String index; private Cluster cluster; @Override
public int getWeight() {
return 1;
} @Override
public String getName() {
return null;
} public Cluster getCluster() {
return cluster;
} public void setCluster(Cluster cluster) {
this.cluster = cluster;
} public String getIndex() {
return index;
} public void setIndex(String index) {
this.index = index;
}
}
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
注意,getName方法里面一定要return null, 这样就会根据配置的分片的数量先后顺序来运算哈希key。具体源码如下(翻看KetamaHashing类的源码):
protected void initialize(List<T> shards) {
Charset charset = Charset.forName("utf-8");
String key = null; for(int i = 0; i < shards.size(); ++i) {
T shardInfo = (ShardInfo)shards.get(i);
if (shardInfo == null) {
throw new IllegalArgumentException("shard element #" + i + " is null.");
} AtomicReference<T> wrapper = new AtomicReference(shardInfo);
this.originals.add(wrapper); for(int n = 0; n < 160 * shardInfo.getWeight(); ++n) {
if (shardInfo.getName() == null) {
key = "SHARD-" + i + "-NODE-" + n;
} else {
key = shardInfo.getName() + "*" + shardInfo.getWeight() + n;
} this.nodes.put(this.algo.hash(key.getBytes(charset)), wrapper);
}
} }
注意我标黄颜色部分,正式因为shardInfo.getName为null,所以我们的路由算法才能够按照配置的分片顺序进行路由。
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
然后进行实现即可:
public Cluster getCluster(String key) {
KetamaHashing ketamaHashing = new KetamaHashing(shardNodes, new MurmurHash());
ShardNode shard = (ShardNode) ketamaHashing.getShardInfo(key.getBytes());
return shard.getCluster();
}
这样我们就可以通过key来获取新的Redis Cluster实例了。通过测试用例结果,我们也可以看出Jedis路由算法和我们所写的路由算法是一致的。
@Test
public void testJedisHash() { Map<String, String> map = new HashMap<>();
map.put("192.168.155.84:6379", "0");
map.put("192.168.155.84:6390", "1");
map.put("192.168.155.85:6379", "2");
map.put("192.168.155.85:6390", "3"); String key;
List<String> list = new ArrayList<>(); for (int i = 0; i < 1000; i++) { key = UUID.randomUUID().toString(); ShardNode cluster = storeJimdbs.getShardNode(key); ShardInfo redisShard = jrc.getShardInfo(key);
String shardKey = redisShard.toString().split("/")[0]; if (cluster.getIndex().equals(map.get(shardKey))) {
list.add("OK");
} else {
System.out.println("NNNNNNNotMatch!!!!!!!");
}
} System.out.println(list.size());
}
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
最后运算出来的结果是1000,也就是说1000个随机key,利用Jedis路由算法操作,利用我们写的路由算法操作,其实是打到相同的分片序号上的。
也就是0号分片对应0号cluster。
Jedis路由key的算法剥离的更多相关文章
- 基于SNMP的路由拓扑发现算法收集
一.三层(网络层)发现 算法来源:王娟娟.基于SNMP的网络拓扑发现算法研究.武汉科技大学硕士学位论文,2008 数据结构: 待检路由设备网关链表:存放指定深度内待检路由设备的网关信息,处理后删除. ...
- key寻址算法
分布式寻址算法 hash 算法(大量缓存重建) 一致性 hash 算法(自动缓存迁移)+ 虚拟节点(自动负载均衡) redis cluster 的 hash slot 算法 hash 算法 来了一个 ...
- 用Jedis操作redis示例一,Key,value HashMap
简单的key,value形式 public class RedisDemo { public static void main(String[] args) { Jedis jedis = new J ...
- jedis连接池详解(Redis)
转自:http://tianxingzhe.blog.51cto.com/3390077/1684306 原子性(atomicity): 一个事务是一个不可分割的最小工作单位,事务中包括的诸操作要么都 ...
- 超大批量删除redis中无用key+配置
目前线上一个单实例redis中无用的key太多,决定删除一部分. 1.删除指定用户的key,使用redis的pipeline 根据一定条件把需要删除的用户统计出来,放到一个表里面,表为 del_use ...
- _00013 一致性哈希算法 Consistent Hashing 新的讨论,并出现相应的解决
笔者博文:妳那伊抹微笑 博客地址:http://blog.csdn.net/u012185296 个性签名:世界上最遥远的距离不是天涯,也不是海角,而是我站在妳的面前.妳却感觉不到我的存在 技术方向: ...
- Jedis使用总结【pipeline】【分布式的id生成器】【分布式锁【watch】【multi】】【redis分布式】(转)
前段时间细节的了解了Jedis的使用,Jedis是redis的java版本的客户端实现.本文做个总结,主要分享如下内容: [pipeline][分布式的id生成器][分布式锁[watch][multi ...
- RabbitMQ之路由(Routing)【译】
在上一节中,我们创建了一个简单的日志系统,可以广播消息到很多接收者. 这一节,我们将在上一节的基础上加一个功能--订阅部分消息.例如,我们只将严重错误信息写入到日志文件保存在磁盘上,同时我们能将所有的 ...
- 一致性hash与CRUSH算法总结
相同之处:都解决了数据缓存系统中数据如何存储与路由. 不同之处:区别在于虚拟节点和物理节点的映射办法不同 由于一般的哈希函数返回一个int(32bit)型的hashCode.因此,可以将该哈希函数能够 ...
随机推荐
- python 字典嵌套字典赋值异常
针对dict中 嵌套dict 出现复制异常 lists={} test=['s1','s2','s3'] data = {'value': '',} for i in range(2): lists[ ...
- PWM_MOTOR_B
port_cfg.h witti: #define PORT_CONFIG_PIN_E0_USAGE PORT_CONFIG_GPIO_OUT magna ...
- docker环境下的测试
docker作为容器常见用于快速部署,最近有个项目是基于docker的,总结一下docker的测试. 1.在主机中安装Docker: ubuntu安装:curl -s https://get.dock ...
- PL/SQL变量的作用域和可见性
变量的作用域和可见性设计变量在块中的位置,不同的位置使得变量具有不同的有效性与可访问性. 变量的作用域是指可以使用变量的程序单元部分,可以是包和子程序包等. 当一个变量在它的作用域中可以用一个不限定的 ...
- PHP选择排序
选择排序,非常的直观,也相对简单. 思路如下: 假设,从小到大排序. 首先,第一轮循环,从所有数组中,找出最小的元素,然后将其下标记录下来. 然后,确定不是第一个元素,则和第一个元素进行交换. 接下来 ...
- 顺手写一下HTTP协议
本文目录 一 什么是HTTP协议 二 Http的特点 三 Http报文 回到目录 一 什么是HTTP协议 HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写 ...
- heartFunction c语言
#include <stdio.h> int main(int argc, char *argv[]) { float y,x,z,f; for(y = 1.5f;y > -1.5f ...
- MemoryCache
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.caching.memorycache?view=netframework-4.8 ...
- list,tuple,dict,set的增删改查
数据结构 list tuple dict set 增 append insert d['key']=value add 删 pop pop(0) d.pop('name') pop re ...
- .NET Core Agent
.NET Core Agent 熟悉java的朋友肯定知道java agent,当我看到java agent时我很是羡慕,我当时就想.net是否也有类似的功能,于是就搜索各种资料,结果让人很失望.当时 ...