【数论】 快速幂&&矩阵快速幂
首先复习快速幂
#include<bits/stdc++.h>
using namespace std;
long long power(long long a,long long b,long long k)
{
long long ans=,base=a;
while (b>)
{
if(b&)
{
ans*=base;
ans%=k;
}
base*=base;
base%=k;
b>>=;
}
return ans;
}
int main()
{
long long b,p,k;
cin>>b>>p>>k;
cout<<b<<'^'<<p<<" mod "<<k<<"="<<(power(b,p,k) % k);
return ;
}
我居然不DEFINE LL?可以看到上面的码十分好懂
那么矩阵快速幂也是一样的 只不过把*换成了mul函数
用计算机模拟矩阵乘法是这样的
struct mat{
long long m[][];//这里不开ll会死人
};
mat mul(mat x,mat y){
mat r;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
r.m[i][j] = ;
}
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
for(int k=;k<=n;k++){
r.m[i][j] += (x.m[i][k] * y.m[k][j]) % p;
r.m[i][j] %= p;
}
}
}
return r;
}
首先定义一个矩阵并赋初值0 然后模拟乘的过程
什么?你想看矩阵乘法的公式?我不会MARKDOWN啊百度麻烦您了
还有一个小问题 就是在矩阵乘法中 什么矩阵是“1"?
答案就是(1,1)(2,2)(3,3).....(N,N)=1 其他地方为0的矩阵(可以自己手动模拟一下)
好了上完整代码
#include<bits/stdc++.h>
#define ll long long
#define p 1000000007 using namespace std; struct mat{
long long m[][];
}e,ans1,ans2; ll k,n; mat mul(mat x,mat y){
mat r;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
r.m[i][j] = ;
}
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
for(int k=;k<=n;k++){
r.m[i][j] += (x.m[i][k] * y.m[k][j]) % p;
r.m[i][j] %= p;
}
}
}
return r;
} mat pow(mat x,ll y){
mat ans = e;
while (y>){
if(y&){
ans = mul(ans,x);
}
x=mul(x,x);
y>>=;
}
return ans;
} int main(){
cin>>n>>k;
for(int i=;i<=n;i++) e.m[i][i] = ;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&ans1.m[i][j]);
}
}
ans2 =pow (ans1,k);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
printf("%d ",ans2.m[i][j]);
}
cout<<endl;
}
return ;
}
你会了这个才会矩阵加速之类乱七八糟的东西
TAG:SIN_XIII ⑨
【数论】 快速幂&&矩阵快速幂的更多相关文章
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- 快速幂 & 矩阵快速幂
目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...
- jiulianhuan 快速幂--矩阵快速幂
题目信息: 1471: Jiulianhuan 时间限制: 1 Sec 内存限制: 128 MB 提交: 95 解决: 22 题目描述 For each data set in the input ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- 快速幂&&矩阵快速幂
快速幂 题目链接:https://www.luogu.org/problemnew/show/P1226 快速幂用了二分的思想,即将\(a^{b}\)的指数b不断分解成二进制的形式,然后相乘累加起来, ...
- [板子]快速幂&矩阵快速幂
不会的来这看:https://www.cnblogs.com/CXCXCXC/p/4641812.html 简单的一说:当转换为二进制的时候有位运算这种黑科技,&相当于%2判断奇偶性. x&a ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- 矩阵快速幂模板(pascal)
洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格 ...
- 培训补坑(day10:双指针扫描+矩阵快速幂)
这是一个神奇的课题,其实我觉得用一个词来形容这个算法挺合适的:暴力. 是啊,就是循环+暴力.没什么难的... 先来看一道裸题. 那么对于这道题,显然我们的暴力算法就是枚举区间的左右端点,然后通过前缀和 ...
随机推荐
- To My Girlfriend (DP)
题意:求选中若干个数,满足和为S,且不能选中下表i, j 和选中k, l的情况总数量. 思路:DP[i][j][k][l] i:前i个和为j,选中k个和不选中l个的情况数量,那么我们的转换应该是在必选 ...
- Comparing Spring AOP and AspectJ
AOP 概念 在我们开始之前 , 让我们做一个快速.高级别审查的核心术语和概念 : 方面 — —标准 / 特征代码被分散在多个场所中的应用 , 通常不同于实际的业务逻辑 (例如 , 交易管理) .各方 ...
- ABP入门系列之3——创建实体/Code First创建数据表
一.首先来看看ABP体系结构 领域层就是业务层,是一个项目的核心,所有业务规则都应该在领域层实现.实体(Entity): 实体代表业务领域的数据和操作,在实践中,通过用来映射成数据库表.仓储(Repo ...
- ubuntu 下安装 navicat 12
一.去官网下载navicat112_premium_cs_x64 for linux版本二.用tar解压安装包三.navicat解压即可用,直接进入解压后的目录,然后用‘./’运行start_navi ...
- PHP选择排序
选择排序,非常的直观,也相对简单. 思路如下: 假设,从小到大排序. 首先,第一轮循环,从所有数组中,找出最小的元素,然后将其下标记录下来. 然后,确定不是第一个元素,则和第一个元素进行交换. 接下来 ...
- [Python数据挖掘]第5章、挖掘建模(下)
四.关联规则 Apriori算法代码(被调函数部分没怎么看懂) from __future__ import print_function import pandas as pd #自定义连接函数,用 ...
- 换个角度聊聊FaaS
Serverless/FaaS伴随着k8s的热度增加,也成为了热门话题.相关文章介绍了很多,这里笔者不一一赘述,而是从个人见解上聊聊关于FaaS的架构和意义. FaaS可能的架构优化 从AppEngi ...
- linux下 如何切换到root用户
默认安装完成之后并不知道root用户的密码,那么如何应用root权限呢? (1)sudo 命令 xzm@ubuntu:~$ sudo 这样输入当前管理员用户密码就可以得到超级用户的权限.但默认的情况 ...
- vue3.0使用axios报错问题记录
vue-cli3.0使用axios的时候出现错误,记录一下 报错信息: Uncaught TypeError: Cannot set property $axios of #<Vue> w ...
- shell编程(二)之算术运算
bash中的算术运算 +.-./.%.* 实现算术运算 1. let var=算术表达式 2. var=$[算术表达式] 3. var=$((算术表达式)) 4. var=$(expr arg1 ar ...