LeetCode 70 - 爬楼梯 - [递推+滚动优化]
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
设 $f[n]$ 表示跳上 $n$ 级台阶的方案数目,因此很容易得到 $f[n] = f[n-1] + f[n-2]$,这就是一个斐波那契数列。
我们可以用递推的方法 $O(n)$ 求出斐波那契数列求出第 $n$ 项,然后由于每次递推只涉及到三个变量,所以我们用滚动优化的方式使得空间复杂度变成 $O(1)$。
AC代码:
class Solution
{
public:
int climbStairs(int n)
{
if(n<=) return n;
int a[]={,,};
for(int i=;i<=n;i++) a[i%]=a[(i+)%]+a[(i+)%];
return a[n%];
}
};
当然,我们知道斐波那契数列是由通项公式的,我们可以用通项公式 $O(1)$ 地求第 $n$ 项,当然需要注意一下double类型转成int类型时候的一些精度上的小问题。
AC代码:
inline int fibo(int n)
{
double res=1.0/sqrt();
res*=pow((1.0+sqrt())/2.0,n)-pow((1.0-sqrt())/2.0,n);
return (int)(res+1e-);
} class Solution
{
public:
int climbStairs(int n)
{
return fibo(n+);
}
};
LeetCode 70 - 爬楼梯 - [递推+滚动优化]的更多相关文章
- LeetCode 70. 爬楼梯(Climbing Stairs)
70. 爬楼梯 70. Climbing Stairs 题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 ...
- [每日一题2020.06.14]leetcode #70 爬楼梯 斐波那契数列 记忆化搜索 递推通项公式
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, ...
- Leetcode 70.爬楼梯 By Python
假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...
- Leetcode 70 Climbing Stairs 递推
其实就是斐波那契数列 参考dp[n] = dp[n-1] +dp[n-2]; class Solution { public: int climbStairs(int n) { ; ; ; ; i & ...
- HDU 4914 Linear recursive sequence(矩阵乘法递推的优化)
题解见X姐的论文 矩阵乘法递推的优化.仅仅是mark一下. .
- 【LeetCode】70. 爬楼梯
爬楼梯 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...
- 力扣(LeetCode)70. 爬楼梯
假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...
- Leetcode题目70.爬楼梯(动态规划+递归-简单)
题目描述: 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 ...
- LeetCode 题解 | 70. 爬楼梯
假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解释: 有两 ...
随机推荐
- 用juery的ajax方法调用aspx.cs页面中的webmethod方法
首先在 aspx.cs文件里建一个公开的静态方法,然后加上WebMethod属性. 如: [WebMethod] public static string GetUserName() { //.... ...
- Bootstrap模态框钩子事件
事件类型 描述show.bs.modal show 方法调用之后立即触发该事件.如果是通过点击某个作为触发器的元素,则此元素可以通过事件的 relatedTarget 属性进行访问.shown.b ...
- 题解P3711:【仓鼠的数学题】
这题黑的丫!怎么会掉紫呢! noteskey 伯努利数... 这里 有介绍哟~ 写的非常详细呢~ 反正这题就是推柿子... 另外就是黈力算法的运用 QWQ 我们令 \(ANS(x)\) 为答案多项式, ...
- ES6-Promise.all()使用
Promise.add 方法:将多个 promise 实例,包装成一个新的 promise 实例. const p = Promise.all([p1, p2, p3]); 接受一个数组作为参数,p1 ...
- 25)django-form使用
目录 1)django form作用 2)django form使用 一:django form 作用 django form有两个作用:一是用户输入数据验证:二是生成html 1)用户输入数据验证, ...
- 文本框监听事件blur()的简单使用
场景描述:在做编辑功能的时候,经常要判断编码,或者密码之类的是否已经被使用,以前自己做的时候,经常都是在提交了之后才判断的,到现在,才发现,这样做的用户体验不好,完美一点的做法就是当此文本框失去焦点的 ...
- 《剑指offer》连续子数组的最大和
本题来自<剑指offer> 反转链表 题目: 思路: C++ Code: Python Code: 总结:
- 获取元素属性get_attribute
获取text # coding:utf-8 from appium import webdriver from time import sleep desired_caps = { 'platform ...
- 【转】 为什么我们做分布式使用Redis
绝大部分写业务的程序员,在实际开发中使用 Redis 的时候,只会 Set Value 和 Get Value 两个操作,对 Redis 整体缺乏一个认知.这里对 Redis 常见问题做一个总结,解决 ...
- Java Spring Boot VS .NetCore (十) Java Interceptor vs .NetCore Interceptor
Java Spring Boot VS .NetCore (一)来一个简单的 Hello World Java Spring Boot VS .NetCore (二)实现一个过滤器Filter Jav ...