luogu P5286 [HNOI2019]鱼
这题真的牛皮,还好考场没去刚(
这题口胡起来真的简单
首先枚举D点,然后对其他所有点按极角排序,同时记录到D的距离.然后按照极角序枚举A,那么鱼尾的两个点的极角范围就是A关于D对称的那个向量,然后左右各\(\frac{\pi}{2}\),因为A的极角增大,区间也会往后移,然后问题就是一个范围内同距离点对数,学过莫队的都会吧(逃
然后处理BC,一对合法的BC,首先要和AD垂直,然后BC中点要落在线段AD(不含端点)上,那么,BC中垂线必须唯一(中垂线的斜率和截距唯一),并且BC对应的中点的坐标范围要夹在A和D之间,然后预处理所有线段,按中垂线斜率,截距以及中点的x,y坐标之和三维度排序,每次有个AD,就能直接二分找到合法区间,然后直接算数量
注意BC,EF之间可以反过来,所以最后答案*4
代码仅供参考
// luogu-judger-enable-o2
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db long double
using namespace std;
const int N=1000+10;
const db eps=1e-13,pi=acos(-1);
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct point
{
db x,y;
point(){}
point(db nx,db ny){x=nx,y=ny;}
point operator - (const point &bb) const {return point(x-bb.x,y-bb.y);}
db operator * (const point &bb) const {return x*bb.x+y*bb.y;}
db operator ^(const point &bb) const {return x*bb.y-y*bb.x;}
}a[N],b[N],fk;
db sq(db x){return x*x;}
db dis(point aa,point bb){return sqrt(sq(aa.x-bb.x)+sq(aa.y-bb.y));}
db ang(point aa,point bb){return atan2(bb.y-aa.y,bb.x-aa.x);}
int n,m,bk[N];
LL ans,sb[N],tb,tc,na;
struct node
{
db dx,dy,b,x;
bool operator < (const node &bb) const
{
if(fabs(dy*bb.dx-dx*bb.dy)>eps) return dy*bb.dx<dx*bb.dy;
if(!dx&&fabs(b-bb.b)>eps) return b<bb.b;
else if(fabs(b*bb.dx-bb.b*dx)>eps) return b*bb.dx<bb.b*dx;
return x<bb.x;
}
}p2[N*N];
struct nn
{
db a,x,y;LL d;
bool operator < (const nn &bb) const {return a<bb.a;}
}vc[N<<1];
int main()
{
n=rd();
for(int i=1;i<=n;++i)
{
int x=rd(),y=rd();
a[i]=point(x,y);
}
for(int i=1;i<=n;++i)
for(int j=i+1;j<=n;++j)
{
db dx=-(a[i].y-a[j].y),dy=a[i].x-a[j].x,k=-(a[i].x-a[j].x+(fabs(a[i].x-a[j].x)<eps?eps:0))/(a[i].y-a[j].y+(fabs(a[i].y-a[j].y)<eps?eps:0));
if(dx<0) dx=-dx,dy=-dy;
if(fabs(dx)<eps) dy=1;
db mx=(a[i].x+a[j].x)/2,my=(a[i].y+a[j].y)/2,bb=dx*my-dy*mx;
p2[++m]=(node){dx,dy,dx?bb:mx,fabs(k+1)>eps?mx+my:mx};
}
sort(p2+1,p2+m+1);
p2[41]<p2[42];
for(int i=1;i<=n;++i)
{
memset(bk,0,sizeof(bk)),na=tb=tc=0;
for(int j=1;j<=n;++j)
if(i!=j)
{
LL sx=floor(a[i].x+0.5),sy=floor(a[i].y+0.5),tx=floor(a[j].x+0.5),ty=floor(a[j].y+0.5);
vc[++tc]=(nn){ang(a[i],a[j]),a[j].x,a[j].y,(sx-tx)*(sx-tx)+(sy-ty)*(sy-ty)};
sb[++tb]=(sx-tx)*(sx-tx)+(sy-ty)*(sy-ty);
}
sort(vc+1,vc+tc+1);
sort(sb+1,sb+tb+1),tb=unique(sb+1,sb+tb+1)-sb-1;
for(int j=1;j<=tc;++j) vc[j].d=lower_bound(sb+1,sb+tb+1,vc[j].d)-sb;
for(int j=1;j<=tc;++j) vc[j+tc]=vc[j],vc[j+tc].a+=pi+pi;
for(int j=1,l=1,r=0;j<=tc;++j)
{
while(r<tc+tc&&vc[r+1].a<vc[j].a+1.5*pi-eps) ++r,++bk[vc[r].d],na+=bk[vc[r].d]-1;
while(vc[l].a<vc[j].a+0.5*pi+eps) na-=bk[vc[l].d]-1,--bk[vc[l].d],++l;
db dx=a[i].x-vc[j].x,dy=a[i].y-vc[j].y,k=(a[i].y-vc[j].y+(fabs(a[i].y-vc[j].y)<eps?eps:0))/(a[i].x-vc[j].x+(fabs(a[i].x-vc[j].x)<eps?eps:0));
if(dx<0) dx=-dx,dy=-dy;
if(fabs(dx)<eps) dy=1;
db bb=a[i].y*dx-a[i].x*dy,ll=fabs(k+1)>eps?a[i].x+a[i].y:a[i].x,rr=fabs(k+1)>eps?vc[j].x+vc[j].y:vc[j].x;
if(ll>rr) swap(ll,rr);
int sl=upper_bound(p2+1,p2+m+1,(node){dx,dy,dx?bb:a[i].x,ll+eps})-p2,sr=lower_bound(p2+1,p2+m+1,(node){dx,dy,dx?bb:a[i].x,rr-eps})-p2-1;
ans+=na*(sr-sl+1);
}
}
printf("%lld\n",ans<<2);
//awsl
return 0;
}
luogu P5286 [HNOI2019]鱼的更多相关文章
- HNOI2019 鱼 fish
本来想写个改题记录的然后想了想改不完所以就分开写了= = https://www.luogu.org/problemnew/show/P5286 显然枚举A,D,然后鱼头和鱼身分开来考虑. 鱼身:先枚 ...
- [HNOI2019]鱼
Luogu5286 \(2019.4.14\),新生第一题,改了\(3\)个小时 题解-租酥雨,和出题人给的正解一模一样 枚举\(AD\),分别考虑鱼身\(BC\)和鱼尾\(EF\) 到\(E\),\ ...
- [HNOI2019]鱼(计算几何)
看到数据范围n<=1000,但感觉用O(n^2)不现实,所以考虑方向应该是O(n^2logn). 一种暴力做法:用vector存到1点相同的2点和到2点相同的1点,然后枚举A,枚举BC,再枚举D ...
- Luogu P5292 [HNOI2019]校园旅行
非常妙的一道思博题啊,不愧是myy出的题 首先我们考虑一个暴力DP,直接开一个数组\(f_{i,j}\)表示\(i\to j\)的路径能否构成回文串 考虑直接拿一个队列来转移,队列里存的都是\(f_{ ...
- luogu P5287 [HNOI2019]JOJO
传送门 神™这题暴力能A,这出题人都没造那种我考场就想到的数据,难怪我的垃圾做法有分 先考虑没有撤销操作怎么做,因为每次插入一段一样的字符,所以我们可以把\(x\)个字符\(c\)定义为\(cx\), ...
- luogu P5288 [HNOI2019]多边形
传送门 这是什么神仙操作... 首先要注意一些性质.首先每一个\((x,n)\)的边可以把当前多边形分成两半,这两半的操作是独立的.然后对于某一个没有\((x,n)\)的边的多边形,最优操作是唯一的. ...
- luogu P5293 [HNOI2019]白兔之舞
传送门 关于这题答案,因为在所有行,往后跳到任意一行的\(w_{i,j}\)都是一样的,所以可以算出跳\(x\)步的答案然后乘上\(\binom{l}{x}\),也就是枚举跳到了哪些行 如果记跳x步的 ...
- luogu P5294 [HNOI2019]序列
传送门 这个什么鬼证明直接看uoj的题解吧根本不会证明 首先方案一定是若干段等值的\(B\),然后对于一段,\(B\)的值应该是\(A\)的平均值.这个最优方案是可以线性构造的,也就是维护以区间平均值 ...
- 【洛谷5286】[HNOI2019] 鱼(计算几何)
点此看题面 大致题意: 给你\(n\)个点,让你求鱼形图的数量. 核心思路 首先,考虑到\(n\)这么小,我们可以枚举线段\(AD\),再去找符合条件的\(BC,EF\). 然后,不难发现\(BC\) ...
随机推荐
- Python调用接口的几种方式
1. requests import requests, jsongithub_url = 'https://api.github.com/user/repos'data = json.dumps({ ...
- LOJ2831 JOISC2018 道路建设 LCT、树状数组
传送门 题目的操作大概是:求某个点到根的链的逆序对,然后对这条链做区间赋值 求某个点到根的链,就是LCT中的access操作,所以我们每一次把access过后的链打上标记,就可以做到区间赋值了. 计算 ...
- iOS开发基础-九宫格坐标(2)之模型
在iOS开发基础-九宫格(1)中,属性变量 apps 是从plist文件中加载数据的,在 viewDidLoad 方法中的第20行.26行中,直接通过字典的键名来获取相应的信息,使得 ViewCont ...
- linux 运维工程师发展路线
linux运维发展常见的就是下面两条路线:第一条:运维应用-->系统架构-->运维开发-->系统开发第二条:运维应用-->应用dba-->架构dba-->开发DBA ...
- golang介绍
一.golang介绍 golang是Google开发的一种 静态强类型.编译型,并发型,并具有垃圾回收功能的编程语言. 二.语言特性 1..自动垃圾回收 2.支持函数多返回值 3.并发强 三.gol ...
- webBrowser兼容
using Microsoft.Win32; using System; using System.Collections.Generic; using System.ComponentModel; ...
- vue中@contextmenu在pc和mac中的区别
项目中有用到右键菜单,故用了@contextmenu,由于本人是用的PC电脑,所以一切正常, 但是有同事用mac测试了一下,问题随之而来,MAC上右键按下就触发了, PC上面是鼠标抬起才会触发,所以这 ...
- 数据分析---《Python for Data Analysis》学习笔记【01】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- java实现sftp客户端上传文件夹的功能
使用的jar: <dependencies> <dependency> <groupId>jsch</groupId> <artifactId&g ...