ARIMA模型原理
一、时间序列分析
北京每年每个月旅客的人数,上海飞往北京每年的游客人数等类似这种顾客数、访问量、股价等都是时间序列数据。这些数据会随着时间变化而变化。时间序列数据的特点是数据会随时间的变化而变化。
随机过程的特征值有均值、方差、协方差等。如果随机过程的特征随时间变化而变化,那么数据是非平稳的,相反,如果随机过程的特征随时间变化而不变化,则此过程是平稳的。
如图所示:

非平稳时间序列分析时,若导致非平稳的原因是确定的,可以用的方法主要有趋势拟合模型、季节调整模型、移动平均、指数平滑等。
若导致非平稳的原因是随机的,方法主要有ARIMA,以及自回归条件异方差模型等。
二、ARIMA
1、简介
ARIMA通常用于需求预测和规划中。可以用来对付随机过程的特征随着时间变化而非固定。并且导致时间序列非平稳的原因是随机而非确定的。不过,如果从一个非平稳的时间序列开始,首先需要做差分,直到得到一个平稳的序列。模型的思想就是从历史的数据中学习到随时间变化的模式,学到了就用这个规律去预测未来。
ARIMA(p,d,q)
- d是差分的阶数,用来得到平稳序列
- p为相应的自回归项
- q是移动平均项数
2、自回归模型AR
自回归模型描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测。自回归模型必须满足平稳性。
自回归模型需要先确定一个阶数p,表示用几期的历史值来预测当前值。p阶自回归模型可以表示为:

yt是当前值,u是常数项,p是阶数,r是自相关系数,e是误差
AR的限制:
- 自回归模型是自身的数据进行预测
- 必须具有平稳性
- 必须具有相关性
- 如果自相关系数小雨0.5,则不宜采用
- 自回归只适用于预测与自身前期相关的现象
3、移动平均模型MA
移动平均模型关注的自回归模型中的误差项的累加,q阶自回归过程的公式定义如下:

移动平均模型能有效地消除预测中的随机波动
4、自回归移动平均模型ARMA
自回归模型AR和移动平均模型MA模型相结合,我们就得到了自回归移动平均模型ARMA(p,q),计算公式如下:

5、p、q的确定
(1)
(2)结合最终的预测误差来确定p、q的阶数,在相同的预测误差情况下,根据奥斯卡姆剃刀准则,模型越小越好。平衡预测误差和参数个数,我们可以根据信息准则函数法,来确定模型的阶数。预测误差通常用平方误差即残差平方和来表示。
常用的信息准则函数法:
- ACI == 2*(模型参数个数)-2ln(模型的极大似然函数)
- BIC = ln(n) * (模型中参数的个数)-2ln(模型的极大似然函数值),n是样本容量
6、模型的检验
主要的检验值:
- 检验参数估计的显著性(t检验)
- 检验残差序列的随机性,即残差之间是独立的
残差序列的随机性可以通过自相关函数法来检验,即做残差的自相关函数图
ARIMA模型原理的更多相关文章
- ARIMA模型总结
时间序列建模基本步骤 获取被观测系统时间序列数据: 对数据绘图,观测是否为平稳时间序列:对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列: 经过第二步处理,已经得到平稳时间序列.要对平稳时间序 ...
- 时间序列分析模型——ARIMA模型
时间序列分析模型——ARIMA模型 一.研究目的 传统的经济计量方法是以经济理论为基础来描述变量关系的模型.但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左 ...
- ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)
ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...
- word2vec模型原理与实现
word2vec是Google在2013年开源的一款将词表征为实数值向量的高效工具. gensim包提供了word2vec的python接口. word2vec采用了CBOW(Continuous B ...
- 【转】Select模型原理
Select模型原理利用select函数,判断套接字上是否存在数据,或者能否向一个套接字写入数据.目的是防止应用程序在套接字处于锁定模式时,调用recv(或send)从没有数据的套接字上接收数据,被迫 ...
- Select模型原理
Select模型原理 利用select函数,推断套接字上是否存在数据,或者是否能向一个套接字写入数据.目的是防止应用程序在套接字处于锁定模式时,调用recv(或send)从没有数据的套接字上接收数据, ...
- asp.net请求响应模型原理随记回顾
asp.net请求响应模型原理随记回顾: 根据一崇敬的讲师总结:(会存在些错误,大家可以做参考) 1.-当在浏览器输入url后,客户端会将请求根据http协议封装成为http请求报文.并通过主sock ...
- 时间序列预测之--ARIMA模型
什么是 ARIMA模型 ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model).也记作ARIM ...
- Actor模型原理
1.Actor模型 在使用Java进行并发编程时需要特别的关注锁和内存原子性等一系列线程问题,而Actor模型内部的状态由它自己维护即它内部数据只能由它自己修改(通过消息传递来进行状态修改),所以使用 ...
随机推荐
- 初步了解PE分析
尝试编写代码获取PE文件的信息. 首先使用 CreateFile打开一个PE文件并返回一个用于访问该对象的handle. HANDLE CreateFile( LPCTSTR lpFileName, ...
- 使用git提交代码到github,每次都要输入用户名和密码的解决方法
自从使用git提交代码到github后,发现自己使用git的功力增长了不少,但也遇到不少问题.比如,使用git提交代码到github的时候,经常要求输入用户名和密码,类似这种: 网上有这么一种解决方法 ...
- java 位运算符 以及加法 交换两个变量值
先给出十转二的除法 2 60 30 0 15 0 7 1 3 1 1 1 0 1 60转二 111100 再介绍位运算符 a=60 b=13 A = 0011 1100 B ...
- android获取string.xml的值
在android开发过程中,编写java代码中的常量过一般情况下,我们是定义在string.xml这个文件中.这样修改起来也很方便,而且做国际化也很简单. 这个string.xml的值会被R文件映射, ...
- Cookies, Claims and Authentication in ASP.NET Core(转载)
Most of the literature concerning the theme of authentication in ASP.NET Core focuses on the use of ...
- 【深色模式】macOS Mojave+Visual Studio for Mac+FineUICore多图赏析!
全面开启深色模式,今早成功升级到 macOS Mojave,下面就来欣赏一下吧. 点击图片,查看大图 1. 下载 macOS Mojave 2. 安装成功,开启深色模式 3. 来一张桌面截图 4. 开 ...
- Scrum Meeting 博客
笨拙软件工程 Scrum Meeting 博客汇总 一.Alpha阶段 [alpha阶段]第一次Scrum Meeting [alpha阶段]第二次Scrum Meeting [alpha阶段]第三次 ...
- day10(函数定义,使用)
一:函数 # ***** # 函数:完成 特定 功能的代码块,作为一个整体,对其进行特定的命名,该名字就代表函数 # -- 现实中:很多问题要通过一些工具进行处理 => 可以将工具提前生产出来并 ...
- Tomcat FAIL - Deploy Upload Failed, Exception: org.apache.tomcat.util.http.fileupload.FileUploadBase$SizeLimitExceededException: the request was rejected because its size (110960596) exceeds the confi
https://maxrohde.com/2011/04/27/large-war-file-cannot-be-deployed-in-tomcat-7/ Go to the web.xml of ...
- H5软键盘兼容方案
前言 最近一段时间在做 H5 聊天项目,踩过其中一大坑:输入框获取焦点,软键盘弹起,要求输入框吸附(或顶)在输入法框上.需求很明确,看似很简单,其实不然.从实验过一些机型上看,发现主要存在以下问题: ...