一、时间序列分析

北京每年每个月旅客的人数,上海飞往北京每年的游客人数等类似这种顾客数、访问量、股价等都是时间序列数据。这些数据会随着时间变化而变化。时间序列数据的特点是数据会随时间的变化而变化。

随机过程的特征值有均值、方差、协方差等。如果随机过程的特征随时间变化而变化,那么数据是非平稳的,相反,如果随机过程的特征随时间变化而不变化,则此过程是平稳的。

如图所示:

非平稳时间序列分析时,若导致非平稳的原因是确定的,可以用的方法主要有趋势拟合模型、季节调整模型、移动平均、指数平滑等。

若导致非平稳的原因是随机的,方法主要有ARIMA,以及自回归条件异方差模型等。

二、ARIMA

1、简介

ARIMA通常用于需求预测和规划中。可以用来对付随机过程的特征随着时间变化而非固定。并且导致时间序列非平稳的原因是随机而非确定的。不过,如果从一个非平稳的时间序列开始,首先需要做差分,直到得到一个平稳的序列。模型的思想就是从历史的数据中学习到随时间变化的模式,学到了就用这个规律去预测未来。

ARIMA(p,d,q)

  • d是差分的阶数,用来得到平稳序列
  • p为相应的自回归项
  • q是移动平均项数

2、自回归模型AR

自回归模型描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测。自回归模型必须满足平稳性

自回归模型需要先确定一个阶数p,表示用几期的历史值来预测当前值。p阶自回归模型可以表示为:

yt是当前值,u是常数项,p是阶数,r是自相关系数,e是误差

AR的限制:

  • 自回归模型是自身的数据进行预测
  • 必须具有平稳性
  • 必须具有相关性
  • 如果自相关系数小雨0.5,则不宜采用
  • 自回归只适用于预测与自身前期相关的现象

3、移动平均模型MA

移动平均模型关注的自回归模型中的误差项的累加,q阶自回归过程的公式定义如下:

移动平均模型能有效地消除预测中的随机波动

4、自回归移动平均模型ARMA

自回归模型AR和移动平均模型MA模型相结合,我们就得到了自回归移动平均模型ARMA(p,q),计算公式如下:

5、p、q的确定

  (1)

  

  (2)结合最终的预测误差来确定p、q的阶数,在相同的预测误差情况下,根据奥斯卡姆剃刀准则,模型越小越好。平衡预测误差和参数个数,我们可以根据信息准则函数法,来确定模型的阶数。预测误差通常用平方误差即残差平方和来表示。

     常用的信息准则函数法:

  • ACI == 2*(模型参数个数)-2ln(模型的极大似然函数)
  • BIC = ln(n) * (模型中参数的个数)-2ln(模型的极大似然函数值),n是样本容量

6、模型的检验

主要的检验值:

  • 检验参数估计的显著性(t检验)
  • 检验残差序列的随机性,即残差之间是独立的

残差序列的随机性可以通过自相关函数法来检验,即做残差的自相关函数图

ARIMA模型原理的更多相关文章

  1. ARIMA模型总结

    时间序列建模基本步骤 获取被观测系统时间序列数据: 对数据绘图,观测是否为平稳时间序列:对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列: 经过第二步处理,已经得到平稳时间序列.要对平稳时间序 ...

  2. 时间序列分析模型——ARIMA模型

    时间序列分析模型——ARIMA模型 一.研究目的 传统的经济计量方法是以经济理论为基础来描述变量关系的模型.但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左 ...

  3. ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)

    ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...

  4. word2vec模型原理与实现

    word2vec是Google在2013年开源的一款将词表征为实数值向量的高效工具. gensim包提供了word2vec的python接口. word2vec采用了CBOW(Continuous B ...

  5. 【转】Select模型原理

    Select模型原理利用select函数,判断套接字上是否存在数据,或者能否向一个套接字写入数据.目的是防止应用程序在套接字处于锁定模式时,调用recv(或send)从没有数据的套接字上接收数据,被迫 ...

  6. Select模型原理

    Select模型原理 利用select函数,推断套接字上是否存在数据,或者是否能向一个套接字写入数据.目的是防止应用程序在套接字处于锁定模式时,调用recv(或send)从没有数据的套接字上接收数据, ...

  7. asp.net请求响应模型原理随记回顾

    asp.net请求响应模型原理随记回顾: 根据一崇敬的讲师总结:(会存在些错误,大家可以做参考) 1.-当在浏览器输入url后,客户端会将请求根据http协议封装成为http请求报文.并通过主sock ...

  8. 时间序列预测之--ARIMA模型

    什么是 ARIMA模型 ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model).也记作ARIM ...

  9. Actor模型原理

    1.Actor模型 在使用Java进行并发编程时需要特别的关注锁和内存原子性等一系列线程问题,而Actor模型内部的状态由它自己维护即它内部数据只能由它自己修改(通过消息传递来进行状态修改),所以使用 ...

随机推荐

  1. 功能测试话题分享-0323 Bug

  2. monkey常用命令实例

    一.常用命令的使用 1.monkey进行压力测试的命令是什么呢? adb shell monkey -p <packagename> <count> eg: adb shell ...

  3. elasticsearch6.x集群环境部署

    elasticsearch集群部署安装jdk chmod 755 jdk-8u161-linux-x64.tar.gztar -zxvf jdk-8u161-linux-x64.tar.gzcp jd ...

  4. 网站升级HTTPS后WebSocket不能连接的问题

    一.前端代码 var socket = new WebSocket("wss://www.smcic.cn/wss/"); 注意点: 如果网站使用HTTPS,WebSocket必须 ...

  5. JS中各种宽度距离小结

    js中获取各种宽度和距离,常常让我们混淆,各种浏览器的不兼容让我们很头疼,现在就在说说js中有哪些宽度和距离. 1.名词解释 screen:屏幕.这一类取到的是关于屏幕的宽度和距离,与浏览器无关,应该 ...

  6. springboot开启事务支持时报代理错误

    问题:The bean 'xxx' could not be injected as a 'com.github.service.xx' because it is a JDK dynamic pro ...

  7. 简单实现Python调用有道API接口(最新的)

    # ''' # Created on 2018-5-26 # # @author: yaoshuangqi # ''' import urllib.request import urllib.pars ...

  8. CSS 实现自动换行、强制换行、强制不换行的属性

    实现效果 1.自动换行: word-wrap:break-word; word-break:normal; 2.强制换行: word-break:break-all;       按字符截断换行 /* ...

  9. MRP没生成MRP汇总表

    设置:工作日历延长

  10. <generatePublisherEvidence> 元素

    <configuration> <runtime> <generatePublisherEvidence enabled="false"/> & ...