严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行。原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的次小生成树。然而是严格的QAQ,于是得搞点别的东西来实现“严格”,维护个次大值就行。依次枚举每条边,如果这条边和加上这条边构成的环中最大的边边权相等,取次大值,否则取最大值。

参考代码:

#include<cstdio>
#include<algorithm>
#define ll long long
#include<iostream>
#define A(x) cout << #x << " " << x << endl;
#define qwq 900100
const ll inf = ;
using namespace std;
struct Node
{
ll u,v,val,nxt;
bool used;
} a[ * qwq],b[ * qwq];
ll head[qwq];
ll f[qwq];
ll find(ll x) {
if(x == f[x]) return x;
return f[x] = find(f[x]);
}
ll n,m,cnt;
void add(ll u,ll v,ll w) {
cnt++;
b[cnt].nxt = head[u];
head[u] = cnt;
b[cnt].val = w;
b[cnt].v = v;
}
bool cmp(Node a,Node b) {
return a.val < b.val;
}
ll ans = 0ll;
void kruskal() {
ll k = ;
for(ll i = ; i <= n; i++) f[i] = i;
for(ll i = ; i <= m; i++)
{
ll f1 = find(a[i].u);
ll f2 = find(a[i].v);
if(f1 != f2) {
f[f1] = f2;
k++;
ans += a[i].val;
add(a[i].u,a[i].v,a[i].val);
add(a[i].v,a[i].u,a[i].val);
a[i].used = ;
if(k == n - ) break;
}
}
}
ll fa[qwq][],dep[qwq];
ll maxx[qwq][],lmax[qwq][];
void dfs(ll u,ll pa) {
fa[u][] = pa;
for(int i = head[u]; i; i = b[i].nxt) {
ll v = b[i].v;
if(v == pa) continue;
dep[v] = dep[u] + 1ll;
maxx[v][] = b[i].val;
lmax[v][] = -inf;
dfs(v,u);
}
}
void max_set() {
for(ll i = ; i <= ; i++)
for(ll u = ; u <= n; u++) {
fa[u][i] = fa[fa[u][i - ]][i - ];
maxx[u][i] = max(maxx[u][i - ],maxx[fa[u][i - ]][i - ]);
lmax[u][i] = max(lmax[u][i - ],lmax[fa[u][i - ]][i - ]);
if(maxx[u][i - ] > maxx[fa[u][i - ]][i - ])
lmax[u][i] = max(lmax[u][i],maxx[fa[u][i - ]][i - ]);
else if(maxx[u][i - ] < maxx[fa[u][i - ]][i - ])
lmax[u][i] = max(lmax[u][i],maxx[u][i - ]);
}
}
ll lca(ll x,ll y) {
if(dep[x] < dep[y]) swap(x,y);
for(ll i = ; i >= ; i--)
if(dep[fa[x][i]] >= dep[y])
x = fa[x][i];
if(x == y) return x;
for(ll i = ; i >= ; i--)
if(fa[x][i] ^ fa[y][i]) {
x = fa[x][i];
y = fa[y][i];
}
return fa[x][];
}
ll find_max(ll u,ll v,ll qaq) {
ll Ans = -inf;
for(ll i = ; i >= ; i--) {
if(dep[fa[u][i]] >= dep[v]) {
if(qaq != maxx[u][i])Ans = max(Ans,maxx[u][i]);
else Ans = max(Ans,lmax[u][i]);
u = fa[u][i];
}
}
return Ans;
}
int main()
{
scanf("%lld %lld",&n,&m);
for(ll i = ;i <= m;i++)
{
scanf("%lld %lld %lld",&a[i].u,&a[i].v,&a[i].val);
}
sort(a + ,a + + m,cmp);
kruskal();
lmax[][] = -inf;
dep[] = 1ll;
dfs(,-);
max_set();
ll answ = inf;
for(ll i = ; i <= m; i++)
{
if(!a[i].used)
{
ll u = a[i].u;
ll v = a[i].v;
ll d = a[i].val;
ll Lca = lca(u,v);
ll maxu = find_max(u,Lca,d);
ll maxv = find_max(v,Lca,d);
answ = min(answ,ans - max(maxu,maxv) + d);
}
}
printf("%lld",answ);
}

[Luogu P4180][BJWC 2010]严格次小生成树的更多相关文章

  1. 【Beijing 2010】 次小生成树

    [题目链接] 点击打开链接 [算法] 首先,有一个结论 : 一定有一棵严格次小生成树是在最小生成树的基础上去掉一条边,再加上一条边 这个结论的正确性是显然的 我们先用kruskal算法求出最小生成树, ...

  2. 【luogu P4180 严格次小生成树[BJWC2010]】 模板

    题目链接:https://www.luogu.org/problemnew/show/P4180 这个题卡树剖.记得开O2. 这个题inf要到1e18. 定理:次小生成树和最小生成树差距只有在一条边上 ...

  3. Luogu P4180 【模板】严格次小生成树[BJWC2010]

    P4180 [模板]严格次小生成树[BJWC2010] 题意 题目描述 小\(C\)最近学了很多最小生成树的算法,\(Prim\)算法.\(Kurskal\)算法.消圈算法等等.正当小\(C\)洋洋得 ...

  4. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

  5. [Luogu] 次小生成树

    https://www.luogu.org/problemnew/show/P4180#sub 严格次小生成树,即不等于最小生成树中的边权之和最小的生成树 首先求出最小生成树,然后枚举所有不在最小生成 ...

  6. P4180 【模板】严格次小生成树[BJWC2010]

    P4180 [模板]严格次小生成树[BJWC2010] 倍增(LCA)+最小生成树 施工队挖断学校光缆导致断网1天(大雾) 考虑直接枚举不在最小生成树上的边.但是边权可能与最小生成树上的边相等,这样删 ...

  7. 洛谷P4180【Beijing2010组队】次小生成树Tree

    题目描述: 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还 ...

  8. P4180 [BJWC2010]严格次小生成树

    P4180 [BJWC2010]严格次小生成树 P4180 题意 求出一个无向联通图的严格次小生成树.严格次小生成树的定义为边权和大于最小生成树的边权和但不存在另一棵生成树的边权和在最小生成树和严格次 ...

  9. 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

随机推荐

  1. LeetCode算法题-Quad Tree Intersection(Java实现)

    这是悦乐书的第260次更新,第273篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第127题(顺位题号是558).四叉树是树数据,其中每个内部节点恰好有四个子节点:top ...

  2. 被低估的.net(上) - 微软MonkeyFest 2018广州分享会活动回顾

    前天, 2018年11月10日, 广州图书馆\微软云开发者社区\广东职业教育信息化研究会\珠三角技术沙龙在广州图书馆负一层1号报告厅搞了一场”微软最有价值专家(MVP)广州分享会 - MonkeyFe ...

  3. day 6 - 1 知识点小节

    python2 与 python3 的区别 1. print.input.生成器 #python2 print() print 'abc' range() xrange() 生成器 raw_input ...

  4. 【English】20190315

    accelerate 加速 [ækˈsɛləˌret]  Our goal is to help you be more successful in your role and work togeth ...

  5. Kerberos原理

    前些日子为了搞清楚Kerberos原理,把MIT的Kerberos经典对话看了几遍,终于有了一个稍微清晰的认识,这里稍微记录下,因为Kerberos是使用传统加密技术实现的一个认证机制,所以顺便备忘下 ...

  6. syso快捷键设置

    syso快捷键

  7. MongoDB 创建基础索引、组合索引、唯一索引以及优化

    一.索引 MongoDB 提供了多样性的索引支持,索引信息被保存在system.indexes 中,且默认总是为_id创建索引,它的索引使用基本和MySQL 等关系型数据库一样.其实可以这样说说,索引 ...

  8. Python排序算法——冒泡排序

    有趣的事,Python永远不会缺席! 如需转发,请注明出处:小婷儿的python https://www.cnblogs.com/xxtalhr/p/10786904.html 一.冒泡排序(Bubb ...

  9. 遍历CheckBox根据指定条件做筛选js

    $('#del').click(function(){ var checkeds=$('input[name=cid]:checked') checkeds.each(function() { var ...

  10. 初识:java虚拟机的内存划分

    什么是内存? 内存是计算机中的重要原件,临时存储区域,作用是运行程序.我们编写的程序是存放在硬盘中的,在硬盘中的程序是不会运行的,必须放进内存中才能运行,运行完毕后会清空内存.Java虚拟机要运行程序 ...