题目大意

求出平面最远点对距离的平方。

分析

此题我wa了好久,第一是凸包写错了,后面又是旋转卡壳写错了。。自闭3s。
题解应该是旋转卡壳,但是有人用随机化乱搞过掉了Orz。
讲讲正解。
我们先求出所有点的凸包,然后每一次更新对踵点,就像一个尺子一样卡着这个凸包的每一条边,然后计算两个点对之间的距离就可以了。

代码(借鉴了一下别人的代码)

#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define db double
#define N 50005
#define Vector2 Point
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1; char ch = 0;
    for (; ch < '0' || ch > '9'; ch = getchar())
        if (ch == '-') fl = -1;
    for (; ch >= '0' && ch <= '9'; ch = getchar())
        x = (x << 1) + (x << 3) + (ch ^ 48);
    x *= fl;
}
template <typename T> T sqr(T x) { return x * x; }
struct Point {
    ll x, y;
}P[N], S[N];
int tot = 0;
ll Dist(Point p1, Point p2) {
    return sqr(p1.x - p2.x) + sqr(p1.y - p2.y);
}
Vector2 operator -(Vector2 v1, Vector2 v2) {
    return (Vector2){v1.x - v2.x, v1.y - v2.y};
}
ll Cross(Vector2 v1, Vector2 v2) {
    return v1.x * v2.y - v1.y * v2.x;
}
bool cmp(Point p1, Point p2) {
    if (Cross(p1 - P[1], p2 - P[1]) < 0) return 0;
    if (Cross(p1 - P[1], p2 - P[1]) > 0) return 1;
    return Dist(P[1], p1) < Dist(P[1], p2);
}
bool check(Point p1, Point p2, Point p3, Point p4) {
    return Cross(p2 - p1, p4 - p3) <= 0;
}
void Get_Hull(Point *P, int n) {
    sort(P + 2, P + 1 + n, cmp);
    tot = 0;
    S[++ tot] = P[1];
    for (int i = 2; i <= n; i ++) {
        while (tot > 1 && check(S[tot - 1], S[tot], S[tot], P[i])) -- tot;
        S[++ tot] = P[i];
    }
    S[tot + 1] = S[1];
}
int n;
ll Rotate_Get_ans() {
    if (tot == 1) return 0;
    if (tot == 2) return Dist(S[1], S[2]);
    ll j = 2, ans = 0;
    for (int i = 1; i <= tot; i ++) {
        while (Cross(S[i + 1] - S[i], S[j] - S[i + 1]) <= Cross(S[i + 1] - S[i], S[j + 1] - S[i + 1])) j = j == tot ? 1 : j + 1;
        ans = max(ans, max(Dist(S[i], S[j]), Dist(S[i + 1], S[j])));
    }
    return ans;
}
int main() {
    read(n);
    for (int i = 1; i <= n; i ++) {
        scanf("%lld%lld", &P[i].x, &P[i].y);
        if (P[i].y < P[1].y || (P[i].y == P[1].y && P[i].x < P[1].x)) swap(P[i], P[1]);
    }
    Get_Hull(P, n);
    printf("%lld\n", Rotate_Get_ans());
    return 0;
}

[luogu1452]Beauty Contest【凸包+旋转卡壳】的更多相关文章

  1. POJ 2187 - Beauty Contest - [凸包+旋转卡壳法][凸包的直径]

    题目链接:http://poj.org/problem?id=2187 Time Limit: 3000MS Memory Limit: 65536K Description Bessie, Farm ...

  2. Beauty Contest 凸包+旋转卡壳法

    Beauty Contest Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 27507   Accepted: 8493 D ...

  3. POJ 2187 Beauty Contest [凸包 旋转卡壳]

    Beauty Contest Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 36113   Accepted: 11204 ...

  4. 【POJ 2187】Beauty Contest 凸包+旋转卡壳

    xuán zhuǎn qiǎ ké模板题 是这么读吧(≖ ‿ ≖)✧ 算法挺简单:找对踵点即可,顺便更新答案. #include<cstdio> #include<cstring&g ...

  5. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  6. 【POJ】2187 Beauty Contest(旋转卡壳)

    http://poj.org/problem?id=2187 显然直径在凸包上(黑书上有证明).(然后这题让我发现我之前好几次凸包的排序都错了QAQ只排序了x轴.....没有排序y轴.. 然后本题数据 ...

  7. POJ-2187 Beauty Contest,旋转卡壳求解平面最远点对!

     凸包(旋转卡壳) 大概理解了凸包A了两道模板题之后在去吃饭的路上想了想什么叫旋转卡壳呢?回来无聊就搜了一下,结果发现其范围真广. 凸包: 凸包就是给定平面图上的一些点集(二维图包),然后求点集组成的 ...

  8. POJ2187 Beauty Contest(旋转卡壳)

    嘟嘟嘟 旋转卡壳模板题. 首先求出凸包. 然后\(O(n ^ 2)\)的算法很好想,但那就不叫旋转卡壳了. 考虑优化:直观的想是在枚举点的时候,对于第二层循环用二分或者三分优化,但实际上两点距离是不满 ...

  9. POJ2187 Beauty Contest (旋转卡壳算法 求直径)

    POJ2187 旋转卡壳算法如图 证明:对于直径AB 必然有某一时刻 A和B同时被卡住 所以旋转卡壳卡住的点集中必然存在直径 而卡壳过程显然是O(n)的 故可在O(n)时间内求出直径 凸包具有良好的性 ...

  10. poj 2187 Beauty Contest(二维凸包旋转卡壳)

    D - Beauty Contest Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. openstack-KVM-Memory

    一.Memory 1.查看memory信息 free -g cat /proc/meminfo dmesg | grep Memory 2.xml文件中的内存信息: vim /etc/libvirt/ ...

  2. Python+Appium学习篇之WebView处理

    1.认识WebView 实例说明: 当你打开百度阅读APP→VIP全站去广告→用自带的 UI Automator去定位里面的元素,如图: 不管你去定位  '规则详情'  '开通'等等,都会定位不到,只 ...

  3. Java中JDK和JRE的区别是什么?它们的作用分别是什么?

    JDK和JRE是Java开发和运行工具,其中JDK包含了JRE,但是JRE是可以独立安装的,它们在Java开发和运行的时候起到不同的作用~ 1.JDK JDK是Java Development Kit ...

  4. CodeForces Round #548 Div2

    http://codeforces.com/contest/1139 A. Even Substrings You are given a string s=s1s2…sns=s1s2…sn of l ...

  5. centos安装bundle文件

    centos安装VMware-Workstation-Full-*.bundle那点事 | 鳗鱼是条狗https://kinggoo.com/centos-vmware.htm Linux 下 VMW ...

  6. JMeter中返回Json数据的处理方法(转)

    Json 作为一种数据交换格式在网络开发,特别是 Ajax 与 Restful 架构中应用的越来越广泛.而 Apache 的 JMeter 也是较受欢迎的压力测试工具之一,但是它本身没有提供对于 Js ...

  7. js原生实现div渐入渐出

    jq对渐入渐出进行封装,简单的使用连个方法就可以实现.fadeIn(),fadeOut();如果我们界面没有使用jq那么原生怎么实现呢? 我们讲解一下,这个原理.当我们要实现渐入的时候,首先是让隐藏的 ...

  8. freemarker数值格式化

    语法:number?string(exp) 说明:根据给定的格式化表达式将数值格式化为字符串. 参数:格式化字符串,"0"表示固定占位(至少有这个位数,不足位数用0代替),&quo ...

  9. PermGen space 内存溢出

    1.修改D:\tools\tomcat\tomcat - 7\apache-tomcat-7.0.91\bin tomcat 路径下bin 文件的catalina.bat文件 添加 JAVA_OPTS ...

  10. java中级——二叉树比较冒泡和选择排序

    上次我们说到二叉树排序比较,给出如下的题目 题目:创建五万个随机数,然后用分别用冒泡法,选择法,二叉树3种排序算法进行排序,比较哪种更快 废话不说直接上源码,可以看控制台结果 注意的是 需要我们需要上 ...