考虑\(Burside\)引理,设\(f(x)\)表示置换拆成循环的个数为\(x\)时的答案,那么最终的结果就是\(\displaystyle \frac{\sum_{i=1}^n f(gcd(i,n))}{n}\),化简之后就是\(\displaystyle \frac{\sum_{d|n}f(d)\varphi(\frac{n}{d})}{n}\)。

考虑如何计算不动点的数量,为了方便首先把\(n=m\)的情况直接处理掉,那么现在问题变成了,把环上的点编号,所有模\(d\)相同的点都必须是同时染或者不染色,并且不能有连续的\(k\)个被染色。因为已经处理掉了\(n=m\)的情况,所以只需要至少有一个循环没有被染色,那么问题可以等价于有\(d\)个点要染其中的\(\frac{m}{d}\) 个,不能有连续的\(k\)个都被染色的方案数。

现在把要求的东西重新拿出来定义一下,即有\(N\)个球放成一圈,要给其中\(C\)个染色,不能有连续\(K\)个都被染色,求方案数。

我们把\(C\)个要染色的球拿出来,放进剩下的\(N-C\)个球组成的环的空隙之间,使得每个空隙里的球都不能超过\(K\)个。因为要确定的是标号,所以必须断环成链,那么第\(1\)个和第\(N-C\)个之间的空隙是第一个球之前和最后一个球之后这两段本质上是连在一起的,这两段加起来不能超过\(K\)个。

那么枚举第一个球之前和最后一个球之后这两段一共放了多少个球,然后前后分配一下,所以方案数就是:\(\displaystyle \sum_{i=0}^k (i+1)Put(C-i,N-C-1,K)\),其中\(Put(C,N,K)\)表示把\(C\)个球分成\(N\)组,每组不能超过\(K\)个的方案数,这个东西可以用容斥在\(O(\frac{C}{K})\)的时间里解决,所以单次的复杂度不会超过\(O(\frac{N}{K}*K)=O(N)\)。

那么这样子总的复杂度就是\(O(n+\sigma(gcd(n,m))\)。

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 1000010
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
bool zs[MAX];
int pri[MAX],phi[MAX],tot;
int jc[MAX<<1],inv[MAX<<1],jv[MAX<<1];
void pre(int n)
{
phi[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,phi[i]=i-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0){phi[i*pri[j]]=phi[i]*pri[j];break;}
phi[i*pri[j]]=phi[i]*(pri[j]-1);
}
}
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=2;i<=n+n;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n+n;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<=n+n;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
}
int Choose(int n,int m){if(n<m||n<0||m<0)return 0;return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int Put(int m,int n){if(m<0)return 0;return Choose(n+m-1,n-1);}
int n,m,K,p[MAX];
int Insert(int m,int n,int k)
{
int ret=0;if(m<0)return 0;
for(int i=0,d=1;i<=n;++i,d=MOD-d)
if(m>=1ll*i*(k+1))ret=(ret+1ll*Put(m-i*(k+1),n)*Choose(n,i)%MOD*d)%MOD;
else break;
return ret;
}
int Calc(int d)
{
int N=n/d,C=m/d,ret=0;
if(C<=K)return Choose(N,C);
if(K==1)return (Choose(N-C+1,C)+MOD-Choose(N-C-1,C-2))%MOD;
for(int i=0;i<=K;++i)
ret=(ret+1ll*(i+1)*Insert(C-i,N-C-1,K))%MOD;
return ret;
}
int main()
{
n=read();m=read();K=read();pre(n);
if(n==m){if(K==n)puts("1");else puts("0");return 0;}
if(!m){puts("1");return 0;}
int g=__gcd(n,m),ans=0;
for(int i=1;i*i<=g;++i)
if(g%i==0)
{
ans=(ans+1ll*Calc(i)*phi[i])%MOD;
if(i*i!=g)ans=(ans+1ll*Calc(g/i)*phi[g/i])%MOD;
}
ans=1ll*ans*fpow(n,MOD-2)%MOD;
printf("%d\n",ans);
}

【Luogu4916】魔力环(Burnside引理,组合计数)的更多相关文章

  1. [Luogu4916]魔力环[Burnside引理、组合计数、容斥]

    题意 题目链接 分析 sπo yyb 代码 #include<bits/stdc++.h> using namespace std; typedef long long LL; #defi ...

  2. 【等价的穿越】Burnside引理&Pólya计数法

    Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上 ...

  3. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  4. Luogu P5564 [Celeste-B]Say Goodbye (多项式、FFT、Burnside引理、组合计数)

    题目链接 https://www.luogu.org/problem/P5564 题解 这题最重要的一步是读明白题. 为了方便起见下面设环长可以是\(1\), 最后统计答案时去掉即可. 实际上就相当于 ...

  5. BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)

    题目链接 (Luogu) https://www.luogu.org/problem/P4727 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.ph ...

  6. 【loj6538】烷基计数 加强版 加强版 Burnside引理+多项式牛顿迭代

    别问我为啥突然刷了道OI题,也别问我为啥花括号不换行了... 题目描述 求含 $n$ 个碳原子的本质不同的烷基数目模 $998244353$ 的结果.$1\le n\le 10^5$ . 题解 Bur ...

  7. 等价类计数:Burnside引理 & Polya定理

    提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...

  8. 等价类计数(Polya定理/Burnside引理)学习笔记

    参考:刘汝佳<算法竞赛入门经典训练指南> 感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车. 置换:排列的一一映射.置换乘法相当于函数复合.满足结合律,不满足交 ...

  9. LOJ #6538. 烷基计数 加强版 加强版(生成函数,burnside引理,多项式牛顿迭代)

    传送门. 不妨设\(A(x)\)表示答案. 对于一个点,考虑它的三个子节点,直接卷起来是\(A(x)^3\),但是这样肯定会计重,因为我们要的是无序的子节点. 那么用burnside引理,枚举一个排列 ...

  10. 置换群 Burnside引理 Pólya定理(Polya)

    置换群 设\(N\)表示组合方案集合.如用两种颜色染四个格子,则\(N=\{\{0,0,0,0\},\{0,0,0,1\},\{0,0,1,0\},...,\{1,1,1,1\}\}\),\(|N|= ...

随机推荐

  1. Eclipse中Git的使用以及IDEA中Git的使用

    一.Eclipse中Git解决冲突步骤: 1.进行文件对比,将所有的文件添加到序列. 2.commit文件到本地仓库. 3.pull将远程仓库的代码更新到本地,若有冲突则会所有的文件显示冲突状态(真正 ...

  2. 线程中的current thread not owner异常错误

    多线程常用的一些方法: wait(),wait(long),notify(),notifyAll()等 这些方法是当前类的实例方法, wait()      是使持有对象锁的线程释放锁;wait(lo ...

  3. java设计模式:面向对象设计的7个原则

    在软件开发中,为了提高软件系统的可维护性和可复用性,增加软件的可扩展性和灵活性,程序员要尽量根据7条原则来开发程序,从而提高软件开发效率,节约软件开发成本和维护成本. 这7条原则分别是:开闭原则.里氏 ...

  4. [官网]How to configure the Microsoft Distributed Transaction Coordinator (MSDTC) on Linux

    How to configure the Microsoft Distributed Transaction Coordinator (MSDTC) on Linux APPLIES TO: SQL ...

  5. Day 4-6 xml处理

    xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的 ...

  6. Codeforces 1154C Gourmet Cat

    题目链接:http://codeforces.com/problemset/problem/1154/C 题目大意: 主人有一只猫.周一&周四&周日:吃鱼周二&周六:吃兔子周三 ...

  7. python数据结构与算法第四天【代码执行时间测试模块】

    #!/usr/bin/env python # _*_ coding:UTF-8 _*_ from timeit import Timer def foo(): ''' 使用append方式向列表添加 ...

  8. rmse均方根误差

    rmse=sqrt(sum((w-r).^2)/length(w))

  9. 在js文件中通过jquery定位到某个dom时候设置事件时候 相当于直接在dom里面添加事件

    在js文件中通过jquery定位到某个dom时候设置事件时候 相当于直接在dom里面添加事件  当触发事件时候 会把当前的dom传给该方法

  10. 使用java代码批量删除新浪微博

    首先开骂,新浪微博@#@!,不经我同意就转发各种微博,制造垃圾,还不提供微博批量删除功能,摆明了的流氓行为,可耻可恨,遭人唾弃! SSLClient.java import org.apache.ht ...