python机器学习-sklearn挖掘乳腺癌细胞(四)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制)
网易云观看地址

模型调参
调参是一门黑箱技术,需要经验丰富的机器学习工程师才能做到。幸运的是sklearn有调参的包,入门级学者也可尝试调参。
如果参数不多,可以手动写函数调参,如果参数太多可以用GridSearchCV调参,如果参数多的占用时间太长,可以用randomSizeCV调参,节约调参时间
GridSearchCV
如果参数太多可以用GridSearchCV调参

(1)单参数调参

(2)多参数调参
因为有n_neighbors和weights两个参数,因此诞生了60个结果
因为有两个参数,所以得到最佳模型:weight=distance,n_neighbor=12

RandomSizeSearchCV
randomSizeCV调参类似于GridSearchCV的抽样
如果参数多的占用时间太长,可以用randomSizeCV调参,节约调参时间。
randomSizeCV调参准确率会略低于GridSearchCV,但可以节约大量时间。


randomSizeCV调参代码
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 16 19:54:25 2018 @author: 231469242@qq.com
"""
from sklearn.grid_search import RandomizedSearchCV
import matplotlib.pyplot as plt
#交叉验证
from sklearn.cross_validation import cross_val_score
from sklearn.datasets import load_breast_cancer
from sklearn.neighbors import KNeighborsClassifier #导入数据
cancer=load_breast_cancer()
x=cancer.data
y=cancer.target #调参knn的邻近指数n
k_range=list(range(1,31))
weight_options=['uniform','distance']
param_dist=dict(n_neighbors=k_range,weights=weight_options) knn=KNeighborsClassifier()
#n_iter为随机生成个数
rand=RandomizedSearchCV(knn,param_dist,cv=10,scoring='accuracy',
n_iter=10,random_state=5) rand.fit(x,y)
rand.grid_scores_
print('best score:',rand.best_score_)
print('best params:',rand.best_params_)
https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

项目合作QQ:231469242
python机器学习-sklearn挖掘乳腺癌细胞(四)的更多相关文章
- python机器学习-sklearn挖掘乳腺癌细胞(五)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- python机器学习-sklearn挖掘乳腺癌细胞(三)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- python机器学习-sklearn挖掘乳腺癌细胞(二)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- python机器学习-sklearn挖掘乳腺癌细胞(一)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- python机器学习sklearn 岭回归(Ridge、RidgeCV)
1.介绍 Ridge 回归通过对系数的大小施加惩罚来解决 普通最小二乘法 的一些问题. 岭系数最小化的是带罚项的残差平方和, 其中,α≥0α≥0 是控制系数收缩量的复杂性参数: αα 的值越大,收缩量 ...
- 机器学习Sklearn系列:(四)朴素贝叶斯
3--朴素贝叶斯 原理 朴素贝叶斯本质上就是通过贝叶斯公式来对得到类别概率,但区别于通常的贝叶斯公式,朴素贝叶斯有一个默认条件,就是特征之间条件独立. 条件概率公式: \[P(B|A) = \frac ...
- Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...
- python机器学习实战(四)
python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7364317.html 前言 这篇notebook是关于机器学 ...
- 只需十四步:从零开始掌握 Python 机器学习(附资源)
分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找 ...
随机推荐
- iOS后台运行播放无声音频 测试可行
如果打回来了,就自认倒霉吧 制作无声音频. @interface AppDelegate () { NSInteger count; } @property(strong, nonatomic)NST ...
- Nginx用户权限验证管理
首先需要编译进--with-http_request_model 配置指令:auth_request url | off; #url是指上游服务器地址 context: http/location 备 ...
- windows 动态库的封装以及调用
1.一个程序从源文件编译生成可执行文件的步骤:预编译 --> 编译 --> 汇编 --> 链接(1)预编译,即预处理,主要处理在源代码文件中以“#”开始的预编译指令,如宏展开.处 ...
- BZOJ2428[HAOI2006]均分数据——模拟退火
题目描述 已知N个正整数:A1.A2.…….An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: ,其中σ为均方差,是各组数据和的平均值,xi为第i组数据的数值 ...
- Git——取消merge状态
MERGING状态 取消MERGING 查看更新历史 $ git reflog 恢复之前状态 $ git reset --hard 06a5578
- Matplotlib学习---用matplotlib画阶梯图(step plot)
这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/us-postage.c ...
- AtCoder 瞎做
目录 ARC 058 E - 和風いろはちゃん / Iroha and Haiku 题意 题解 技巧 代码 ARC 059 F - バイナリハック / Unhappy Hacking 题意 题解 技巧 ...
- CF1131F Asya And Kittens(Kruskal重构树,启发式合并)
这题难度1700,我感觉又小了…… 这题虽然没几个人是用kruskal重构树的思想做的,但是我是,所以我就放了个kruskal重构树的标签. 题目链接:CF原网 题目大意:有一个长为 $n$ 的排列, ...
- Rocket.Chat 开源IM系统部署
Rocket.Chat 官方给出的文档也个人觉得太麻烦了,并且对ubuntu的支持程度远高于CentOS,自己就折腾写了个安装的笔记,如果是在公司内部或者是部门内部还是很有用处的,比较看中的功能有和g ...
- 基于配置文件的redis的主从复制
redis中主从复制有很多种配置方法: 1. 使用配置文件即为redis.conf来配置 在随从redis中配置 # slaveof {masterHost} {MastePort} slaveof ...