sklearn于2006年问世于Google,是使用python语言编写的、基于numpy、scipy和matplotlib的一个机器学习算法库,设计的非常优雅,它让我们能够使用同样的接口来实现所有不同的算法调用。

1、三大模块和六大功能

1.1监督学习模块

算法

说明

neighbors

近邻算法

svm

支持向量机

kernel-ridge

核——岭回归

discriminant_analysis

判别分析

linear_model

广义线性模型

ensemle

集成方法

tree

决策树

naive_bayes

朴素贝叶斯

cross_decomposition

交叉分解

gaussian_process

高斯过程

neural_network

神经网络

calibration

概率校准

isotonic

保序回归

feature_selection

特征选择

multiclass

多类多标签算法

1.2非监督学习

算法

说明

decomposition

矩阵因子分解

cluster

聚类

manifold

流形学习

mixture

高斯混合模型

neural_network

无监督神经网络

density

密度估计

covariance

协方差估计

1.3数据变换

算法

说明

feature_extraction

特征抽取

feature_selection

特征选择

preprocess

预处理

random_projection

随机投影

kernel_approximation

核逼近

pipline

管道流(这个严格说不算是数据变换模块)

1.4六大功能

功能

说明(算法)

分类(Classification)

支持向量机分类(SVC)、最近邻法(nearest neighbors)、决策树(decision tree)、随机森林(random forest)等等

回归(regression)

回归、多项式回归(polynomial regression),支持向量回归(SVR)、岭回归(ridge regression)、lasso回归等等

聚类(clustering)

k均值(k-means)、谱聚类(spectral clustering)、mean-shift等方法

降维(Dimensionality reduction)

作用是减少样本向量的维数,比如从200维降到15维,主要算法:主成分分析(PCA)、独立成分分析(ICA)等方法

模型选择(model selection)

作用:评估模型,选择模型,交叉验证,调参等等,网格搜索grid search等

预处理(preprocessing)

用于数据的归一化(normalization)、数据的标准化(standardization)、去均值化(mean removal)、白化(Whitening)、二值化(Binarization)等等

2、算法类的顶层设计

baseEstimator

所有评估器的父类

ClassifierMixin

所有分类器的父类,其子类必须实现一个score函数

RegressorMixin

所有回归器的父类,其子类必须实现一个score函数

ClusterMixin

所有聚类的父类,其子类必须实现一个fit_predict函数

BiClusterMixin

TransformerMixin

所有数据变换的父类,其子类必须实现一个fit_transform函数

DensityMixin

所有密度估计相关的父类,其子类必须实现一个score函数

MetaEsimatorMixin

可能是出于兼容性考虑,看名字就能知道,目前里面没有内容

3、统一的API接口

在sklearn里面使用完全一样的接口来实现不同的机器学习算法,通俗的流程可以理解如下:

①. 数据加载和预处理

②. 定义分类器(回归器等等),譬如svc = svm.svc()

③. 用训练集对模型进行训练,只需调用fit方法,svc.fit(X_train, y_train)

④. 用训练好的模型进行预测:y_pred=svc.predict(X_test)

⑤. 对模型进行性能评估:svc.score(X_test, y_test)

模型评估中,可以通过传入一个score参数来自定义评估标准,该函数的返回值越大代表模型越好。

scikit-learn框架学习笔记(一)的更多相关文章

  1. Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

    所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...

  2. MEAN框架学习笔记

    MEAN框架学习笔记 MEAN开发框架的资料非常少.基本的资料还是来自于learn.mean.io站点上的介绍. 于是抱着一种零基础学习的心态,在了解的过程中,通过翻译加上理解将MEAN框架一点点消化 ...

  3. phalcon(费尔康)框架学习笔记

    phalcon(费尔康)框架学习笔记 http://www.qixing318.com/article/phalcon-framework-to-study-notes.html 目录结构   pha ...

  4. Yii框架学习笔记(二)将html前端模板整合到框架中

    选择Yii 2.0版本框架的7个理由 http://blog.chedushi.com/archives/8988 刚接触Yii谈一下对Yii框架的看法和感受 http://bbs.csdn.net/ ...

  5. JavaSE中Collection集合框架学习笔记(2)——拒绝重复内容的Set和支持队列操作的Queue

    前言:俗话说“金三银四铜五”,不知道我要在这段时间找工作会不会很艰难.不管了,工作三年之后就当给自己放个暑假. 面试当中Collection(集合)是基础重点.我在网上看了几篇讲Collection的 ...

  6. JavaSE中Collection集合框架学习笔记(3)——遍历对象的Iterator和收集对象后的排序

    前言:暑期应该开始了,因为小区对面的小学这两天早上都没有像以往那样一到七八点钟就人声喧闹.车水马龙. 前两篇文章介绍了Collection框架的主要接口和常用类,例如List.Set.Queue,和A ...

  7. JavaSE中Map框架学习笔记

    前言:最近几天都在生病,退烧之后身体虚弱.头疼.在床上躺了几天,什么事情都干不了.接下来这段时间,要好好加快进度才好. 前面用了三篇文章的篇幅学习了Collection框架的相关内容,而Map框架相对 ...

  8. JavaSE中线程与并行API框架学习笔记1——线程是什么?

    前言:虽然工作了三年,但是几乎没有使用到多线程之类的内容.这其实是工作与学习的矛盾.我们在公司上班,很多时候都只是在处理业务代码,很少接触底层技术. 可是你不可能一辈子都写业务代码,而且跳槽之后新单位 ...

  9. JavaSE中线程与并行API框架学习笔记——线程为什么会不安全?

    前言:休整一个多月之后,终于开始投简历了.这段时间休息了一阵子,又病了几天,真正用来复习准备的时间其实并不多.说实话,心里不是非常有底气. 这可能是学生时代遗留的思维惯性--总想着做好万全准备才去做事 ...

  10. scrapy爬虫框架学习笔记(一)

    scrapy爬虫框架学习笔记(一) 1.安装scrapy pip install scrapy 2.新建工程: (1)打开命令行模式 (2)进入要新建工程的目录 (3)运行命令: scrapy sta ...

随机推荐

  1. 安装Feflow遇取的问题

    http://www.feflowjs.org/zh-cn/docs/ 在安装 npm install -g feflow-cli 是遇到这要一个问题 i C:\Program Files (x86) ...

  2. ubuntu下绑定串口

    查看有哪些设备连接在你的电脑上 lsusb 得到如图: 查看usb串口上连接的信息,得到不一样的信息 dmesg | grep ttyS* 我使用了一个usb扩展器,这边可以看到,被连接在ttyUSB ...

  3. CSS3中设置字体的抗锯齿或光滑度的属性

    刚刚接触前端开发,对于-webkit-font-smoothing: antialiased; 这个属性不了解.上网查找了一些资料. 总结一下: -webkit-font-smoothing  :  ...

  4. Node - centOS配置环境

    1.安装依赖包:yum install gcc-c++ openssl-devel (gcc版本查询:gcc -v ,为 4.4.7-11:python版本查询:python –version 为2. ...

  5. 哈希表(Hash Map)

    今天第一次做Leetcode用到了散列表,之前学的数据结构的内容都忘了,正好趁热打铁补一补. 摘自其他博客的一个整合. 一.哈希表简介 数据结构的物理存储结构只有两种:顺序存储结构和链式存储结构(像栈 ...

  6. 使用feign出现 java.lang.IllegalStateException: Service id not legal hostname

    检查spring. application.name是否使用了_

  7. java项目---用java实现二叉平衡树(AVL树)并打印结果(详)(3星)

    package Demo; public class AVLtree { private Node root; //首先定义根节点 private static class Node{ //定义Nod ...

  8. Java scirpt简介

    JavaScript 简介 JavaScript 是脚本语言 JavaScript 是一种轻量级的编程语言. JavaScript 是可插入 HTML 页面的编程代码. JavaScript 插入 H ...

  9. 基于Linux-3.9.4内核的GDB跟踪系统调用实验

    382 + 原创作品转载请注明出处 + https://github.com/mengning/linuxkernel/ 一.实验环境 win10 -> VMware -> Ubuntu1 ...

  10. Linux第三节课学习笔记

    常见执行Linux命令的格式:命令名称 [命令参数] [命令对象]. 命令参数分长格式与短格式,短格式之间可合并. echo命令用于在终端输出字符串或变量提取后的值,格式为“echo [字符串 | $ ...