POJ 2942Knights of the Round Table(tarjan求点双+二分图染色)
| Time Limit: 7000MS | Memory Limit: 65536K | |
| Total Submissions: 13954 | Accepted: 4673 |
Description
Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
- The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
- An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled.
Input
The input is terminated by a block with n = m = 0 .
Output
Sample Input
5 5
1 4
1 5
2 5
3 4
4 5
0 0
Sample Output
2
Hint
Source
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
//#define getchar() (S == T && (T = (S = BB) + fread(BB, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
//char BB[1 << 15], *S = BB, *T = BB;
using namespace std;
const int MAXN=1e5+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
struct node
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
int N,M;
int angry[][];
int dfn[MAXN],low[MAXN],tot=,point[MAXN],color[MAXN],in[MAXN],ans[MAXN];
stack<int>s;
void pre()
{
memset(angry,,sizeof(angry));
num=;
memset(head,-,sizeof(head));
memset(ans,,sizeof(ans));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
}
bool MakeColor(int now,int how)
{
color[now]=how;
for(int i=head[now];i!=-;i=edge[i].nxt)
{
if(!in[edge[i].v]) continue;
if(!color[edge[i].v]&&!MakeColor(edge[i].v,how^)) return ;
else if(color[edge[i].v]==color[now]) return ;
}
return ;
}
void tarjan(int now,int fa)
{
dfn[now]=low[now]=++tot;
s.push(now);
for(int i=head[now];i!=-;i=edge[i].nxt)
{
if(!dfn[edge[i].v]&&edge[i].v!=fa)
{
tarjan(edge[i].v,now);
low[now]=min(low[now],low[edge[i].v]);
if(low[edge[i].v]>=dfn[now])
{
memset(in,,sizeof(in));//哪些在双联通分量里
memset(color,,sizeof(color));
int h=,cnt=;
do
{
h=s.top();s.pop();
in[h]=;
point[++cnt]=h;
}while(h!=edge[i].v);//warning
if(cnt<=) continue;//必须构成环
in[now]=;point[++cnt]=now;
if(MakeColor(now,)==)
for(int j=;j<=cnt;j++)
ans[point[j]]=;
}
}
if(edge[i].v!=fa) low[now]=min(low[now],dfn[edge[i].v]);
}
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
while(scanf("%d%d",&N,&M))
{
if(N==&&M==) break;
pre();
for(int i=;i<=M;i++)
{
int x=read(),y=read();
angry[x][y]=angry[y][x]=;
}
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
if(i!=j&&(!angry[i][j]))
AddEdge(i,j);
for(int i=;i<=N;i++)
if(!dfn[i])
tarjan(i,);
int out=;
for(int i=;i<=N;i++)
if(!ans[i]) out++;
printf("%d\n",out);
}
return ;
}
POJ 2942Knights of the Round Table(tarjan求点双+二分图染色)的更多相关文章
- poj 2942--Knights of the Round Table (点的双连通分量)
做这题简直是一种折磨... 有n个骑士,骑士之间相互憎恨.给出骑士的相互憎恨的关系. 骑士要去开会,围成一圈坐,相互憎恨的骑士不能相邻.开会骑士的个数不能小于三个人.求有多少个骑士不能开会. 注意:会 ...
- KNIGHTS - Knights of the Round Table 圆桌骑士 点双 + 二分图判定
---题面--- 题解: 考场上只想到了找点双,,,,然后不知道怎么处理奇环的问题. 我们考虑对图取补集,这样两点之间连边就代表它们可以相邻, 那么一个点合法当且仅当有至少一个大小至少为3的奇环经过了 ...
- POJ 2942Knights of the Round Table(二分图判定+双连通分量)
题目链接 题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1.2.总人数为奇数.3.有仇恨的骑士不能挨着坐.问有几个骑士不能和任何人形成任何的圆圈. ...
- hdu 2460(tarjan求边双连通分量+LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2460 思路:题目的意思是要求在原图中加边后桥的数量,首先我们可以通过Tarjan求边双连通分量,对于边 ...
- C++[Tarjan求点双连通分量,割点][HNOI2012]矿场搭建
最近在学图论相关的内容,阅读这篇博客的前提是你已经基本了解了Tarjan求点双. 由割点的定义(删去这个点就可使这个图不连通)我们可以知道,坍塌的挖煤点只有在割点上才会使这个图不连通,而除了割点的其他 ...
- [Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分)
[Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分) 题面 给出一个无向图,以及q条有向路径.问是否存在一种给边定向的方案,使得 ...
- POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug
题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...
- poj 2942 Knights of the Round Table - Tarjan
Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress ...
- POJ 2942 Knights of the Round Table 黑白着色+点双连通分量
题目来源:POJ 2942 Knights of the Round Table 题意:统计多个个骑士不能參加随意一场会议 每场会议必须至少三个人 排成一个圈 而且相邻的人不能有矛盾 题目给出若干个条 ...
随机推荐
- ubuntu ImageMagick 图像转换工具
ImageMagick(简称 IM)是一个支持 GPL 协议的开源免费软件包.它由一组命令行工具组成的.它可以对超过 100 种的图像格式(包括 DPX, EXR, GIF, JPEG, JPEG-2 ...
- JavaScript的屏幕输出及时间函数
Js屏幕输出 重定向页面输出: 更改输出流,如果在加载时使用则会正常排序,如果在HTML加载完成后使用,如点击事件,则会全部覆盖原HTML的内容. 1 <script> 2 //参数为输出 ...
- React 实现一个时钟
最终效果 其实主要难点在于最左边的小时钟 指针的实现方式很简单,就是通过绝对定位将指针移到中间,然后以下边中间的位置为圆心旋转即可.代码如下: <!DOCTYPE html> <ht ...
- python搭建web服务
import json from urlparse import parse_qs from wsgiref.simple_server import make_server import os im ...
- 【ABP框架系列学习】启动配置(5)
ABP提供了在启动时配置模块的基础设施和模型. 1.配置ABP 配置ABP是在模块的PreInitialize方法中完成的,例如: public class SimpleTaskSystemModul ...
- IntelliJ IDEA中用Git插件操作
- NET Core 1.1中使用Jwt
NET Core里Jwt的生成倒是不麻烦,就是要踩完坑才知道正确的生成姿势…… Jwt的结构 jwt的结构是{Header}.{Playload}.{Signature}三截.其中Header和Pla ...
- java--String equals方法
本文版权归 远方的风lyh和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. public boolean equals(Object anObject) { //1.先和自身比较对 ...
- HttpServetRequest读取body只能一次的问题
HTTP请求中的是字符串数据: //字符串读取 void charReader(HttpServletRequest request) { BufferedReader br = request.ge ...
- https跨域到http问题解决
整体结构 用户--https-->Nginx--http-->Tomcat 页面中包含了iframe,iframe的src也是Https的,但是当frame里面的内容表单提交后tomcat ...