ZUC-生成随机序列
问题
ZUC国标上的三个例子生成随机序列
例子1
例子2
例子3
代码1
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h> typedef unsigned char uint8;
typedef unsigned int uint32; uint8 S0[256] = {
0x3e, 0x72, 0x5b, 0x47, 0xca, 0xe0, 0x00, 0x33, 0x04, 0xd1, 0x54, 0x98, 0x09, 0xb9, 0x6d, 0xcb,
0x7b, 0x1b, 0xf9, 0x32, 0xaf, 0x9d, 0x6a, 0xa5, 0xb8, 0x2d, 0xfc, 0x1d, 0x08, 0x53, 0x03, 0x90,
0x4d, 0x4e, 0x84, 0x99, 0xe4, 0xce, 0xd9, 0x91, 0xdd, 0xb6, 0x85, 0x48, 0x8b, 0x29, 0x6e, 0xac,
0xcd, 0xc1, 0xf8, 0x1e, 0x73, 0x43, 0x69, 0xc6, 0xb5, 0xbd, 0xfd, 0x39, 0x63, 0x20, 0xd4, 0x38,
0x76, 0x7d, 0xb2, 0xa7, 0xcf, 0xed, 0x57, 0xc5, 0xf3, 0x2c, 0xbb, 0x14, 0x21, 0x06, 0x55, 0x9b,
0xe3, 0xef, 0x5e, 0x31, 0x4f, 0x7f, 0x5a, 0xa4, 0x0d, 0x82, 0x51, 0x49, 0x5f, 0xba, 0x58, 0x1c,
0x4a, 0x16, 0xd5, 0x17, 0xa8, 0x92, 0x24, 0x1f, 0x8c, 0xff, 0xd8, 0xae, 0x2e, 0x01, 0xd3, 0xad,
0x3b, 0x4b, 0xda, 0x46, 0xeb, 0xc9, 0xde, 0x9a, 0x8f, 0x87, 0xd7, 0x3a, 0x80, 0x6f, 0x2f, 0xc8,
0xb1, 0xb4, 0x37, 0xf7, 0x0a, 0x22, 0x13, 0x28, 0x7c, 0xcc, 0x3c, 0x89, 0xc7, 0xc3, 0x96, 0x56,
0x07, 0xbf, 0x7e, 0xf0, 0x0b, 0x2b, 0x97, 0x52, 0x35, 0x41, 0x79, 0x61, 0xa6, 0x4c, 0x10, 0xfe,
0xbc, 0x26, 0x95, 0x88, 0x8a, 0xb0, 0xa3, 0xfb, 0xc0, 0x18, 0x94, 0xf2, 0xe1, 0xe5, 0xe9, 0x5d,
0xd0, 0xdc, 0x11, 0x66, 0x64, 0x5c, 0xec, 0x59, 0x42, 0x75, 0x12, 0xf5, 0x74, 0x9c, 0xaa, 0x23,
0x0e, 0x86, 0xab, 0xbe, 0x2a, 0x02, 0xe7, 0x67, 0xe6, 0x44, 0xa2, 0x6c, 0xc2, 0x93, 0x9f, 0xf1,
0xf6, 0xfa, 0x36, 0xd2, 0x50, 0x68, 0x9e, 0x62, 0x71, 0x15, 0x3d, 0xd6, 0x40, 0xc4, 0xe2, 0x0f,
0x8e, 0x83, 0x77, 0x6b, 0x25, 0x05, 0x3f, 0x0c, 0x30, 0xea, 0x70, 0xb7, 0xa1, 0xe8, 0xa9, 0x65,
0x8d, 0x27, 0x1a, 0xdb, 0x81, 0xb3, 0xa0, 0xf4, 0x45, 0x7a, 0x19, 0xdf, 0xee, 0x78, 0x34, 0x60 }; uint8 S1[256] = {
0x55, 0xc2, 0x63, 0x71, 0x3b, 0xc8, 0x47, 0x86, 0x9f, 0x3c, 0xda, 0x5b, 0x29, 0xaa, 0xfd, 0x77,
0x8c, 0xc5, 0x94, 0x0c, 0xa6, 0x1a, 0x13, 0x00, 0xe3, 0xa8, 0x16, 0x72, 0x40, 0xf9, 0xf8, 0x42,
0x44, 0x26, 0x68, 0x96, 0x81, 0xd9, 0x45, 0x3e, 0x10, 0x76, 0xc6, 0xa7, 0x8b, 0x39, 0x43, 0xe1,
0x3a, 0xb5, 0x56, 0x2a, 0xc0, 0x6d, 0xb3, 0x05, 0x22, 0x66, 0xbf, 0xdc, 0x0b, 0xfa, 0x62, 0x48,
0xdd, 0x20, 0x11, 0x06, 0x36, 0xc9, 0xc1, 0xcf, 0xf6, 0x27, 0x52, 0xbb, 0x69, 0xf5, 0xd4, 0x87,
0x7f, 0x84, 0x4c, 0xd2, 0x9c, 0x57, 0xa4, 0xbc, 0x4f, 0x9a, 0xdf, 0xfe, 0xd6, 0x8d, 0x7a, 0xeb,
0x2b, 0x53, 0xd8, 0x5c, 0xa1, 0x14, 0x17, 0xfb, 0x23, 0xd5, 0x7d, 0x30, 0x67, 0x73, 0x08, 0x09,
0xee, 0xb7, 0x70, 0x3f, 0x61, 0xb2, 0x19, 0x8e, 0x4e, 0xe5, 0x4b, 0x93, 0x8f, 0x5d, 0xdb, 0xa9,
0xad, 0xf1, 0xae, 0x2e, 0xcb, 0x0d, 0xfc, 0xf4, 0x2d, 0x46, 0x6e, 0x1d, 0x97, 0xe8, 0xd1, 0xe9,
0x4d, 0x37, 0xa5, 0x75, 0x5e, 0x83, 0x9e, 0xab, 0x82, 0x9d, 0xb9, 0x1c, 0xe0, 0xcd, 0x49, 0x89,
0x01, 0xb6, 0xbd, 0x58, 0x24, 0xa2, 0x5f, 0x38, 0x78, 0x99, 0x15, 0x90, 0x50, 0xb8, 0x95, 0xe4,
0xd0, 0x91, 0xc7, 0xce, 0xed, 0x0f, 0xb4, 0x6f, 0xa0, 0xcc, 0xf0, 0x02, 0x4a, 0x79, 0xc3, 0xde,
0xa3, 0xef, 0xea, 0x51, 0xe6, 0x6b, 0x18, 0xec, 0x1b, 0x2c, 0x80, 0xf7, 0x74, 0xe7, 0xff, 0x21,
0x5a, 0x6a, 0x54, 0x1e, 0x41, 0x31, 0x92, 0x35, 0xc4, 0x33, 0x07, 0x0a, 0xba, 0x7e, 0x0e, 0x34,
0x88, 0xb1, 0x98, 0x7c, 0xf3, 0x3d, 0x60, 0x6c, 0x7b, 0xca, 0xd3, 0x1f, 0x32, 0x65, 0x04, 0x28,
0x64, 0xbe, 0x85, 0x9b, 0x2f, 0x59, 0x8a, 0xd7, 0xb0, 0x25, 0xac, 0xaf, 0x12, 0x03, 0xe2, 0xf2 }; uint32 D[16] = {
0x44d7, 0x26bc, 0x626b, 0x135e, 0x5789, 0x35e2, 0x7135, 0x09af,
0x4d78, 0x2f13, 0x6bc4, 0x1af1, 0x5e26, 0x3c4d, 0x789a, 0x47ac }; uint32 LFSR[16] = { 0 };
uint32 X[4] = { 0 };
uint32 R1 = 0, R2 = 0;
uint32 W = 0; uint32 mod_add(uint32 a, uint32 b);
uint32 mod_2exp_mul(uint32 x, int exp);
void LFSRWithInitMode(uint32 u);
void LFSRWithWorkMode();
void BitReconstruction(); uint32 mod_add(uint32 a, uint32 b)
{
uint32 c = a + b;
c = (c & 0x7fffffff) + (c >> 31);
return c;
} uint32 mod_2exp_mul(uint32 x, int exp)
{
return ((x << exp) | (x >> (31 - exp))) & 0x7fffffff;
} uint32 Rot(uint32 x, int move)
{
return ((x << move) | (x >> (32 - move)));
} void LFSRWithInitMode(uint32 u)
{
uint32 v = 0, tmp = 0, i = 0; v = LFSR[0];
tmp = mod_2exp_mul(LFSR[0], 8);
v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[4], 20);
v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[10], 21);
v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[13], 17);
v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[15], 15);
v = mod_add(v, tmp); v = mod_add(v, u);
if (v == 0)
v = 0x7fffffff; for (i = 0; i < 15; i++)
LFSR[i] = LFSR[i + 1];
LFSR[15] = v;
} void LFSRWithWorkMode()
{
uint32 v = 0, tmp = 0, i = 0; v = LFSR[0];
tmp = mod_2exp_mul(LFSR[0], 8);
v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[4], 20);
v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[10], 21);
v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[13], 17);
v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[15], 15);
v = mod_add(v, tmp); if (v == 0)
v = 0x7fffffff; for (i = 0; i < 15; i++)
LFSR[i] = LFSR[i + 1];
LFSR[15] = v;
} void BitReconstruction()
{
X[0] = ((LFSR[15] & 0x7fff8000) << 1) | (LFSR[14] & 0xffff);
X[1] = (LFSR[11] << 16) | (LFSR[9] >> 15);
X[2] = (LFSR[7] << 16) | (LFSR[5] >> 15);
X[3] = (LFSR[2] << 16) | (LFSR[0] >> 15);
} uint32 L1(uint32 x)
{
return (x ^ Rot(x, 2) ^ Rot(x, 10) ^ Rot(x, 18) ^ Rot(x, 24));
} uint32 L2(uint32 x)
{
return (x ^ Rot(x, 8) ^ Rot(x, 14) ^ Rot(x, 22) ^ Rot(x, 30));
} uint32 S(uint32 a)
{
uint8 x[4] = { 0 }, y[4] = { 0 };
uint32 b = 0;
int i = 0, row = 0, line = 0;
x[0] = a >> 24;
x[1] = (a >> 16) & 0xff;
x[2] = (a >> 8) & 0xff;
x[3] = a & 0xff;
for (i = 0; i < 4; i++)
{
//row = x[i] >> 4;
//line = x[i] & 0xf;
if (i == 0 || i == 2)
y[i] = S0[x[i]];
else
y[i] = S1[x[i]];
}
b = (y[0] << 24) | (y[1] << 16) | (y[2] << 8) | y[3];
return b;
} void F()
{
uint32 W1 = 0, W2 = 0;
uint32 tmp1 = 0, tmp2 = 0;
W = (X[0] ^ R1) + R2;
W1 = R1 + X[1];
W2 = R2 ^ X[2];
R1 = S(L1((W1 << 16) | (W2 >> 16)));
R2 = S(L2((W2 << 16) | (W1 >> 16)));
} void Key_IV_Insert(uint8* k, uint8* iv)
{
int i = 0;
printf("\ninitial state of LFSR: S[0]-S[15]\n");
for (i = 0; i < 16; i++)
{
LFSR[i] = (k[i] << 23) | (D[i] << 8) | iv[i];
printf("%08x ", LFSR[i]);
}
} void Init(uint8* k, uint8* iv)
{
Key_IV_Insert(k, iv);
R1 = R2 = 0;
uint32 i = 0;
for (i = 0; i < 32; i++)
{
BitReconstruction();
F(X[0], X[1], X[2]);
LFSRWithInitMode(W >> 1);
}
printf("\n------------------------------------------------------------\nstate of LFSR after executing initialization: S[0]-S[15]\n");
for (i = 0; i < 16; i++)
{
printf("%08x ", LFSR[i]);
}
printf("\n------------------------------------------------------------\ninternal state of Finite State Machine:\n");
printf("R1=%08x\n", R1);
printf("R2=%08x\n", R2);
} uint32* KeyStream_Generator(int keylen)
{
uint32 Z = 0, i = 0;
uint32* keystream = (uint32*)malloc(keylen * sizeof(uint32));
BitReconstruction();
F(X[0], X[1], X[2]);
LFSRWithWorkMode();
for (i = 0; i < keylen; i++)
{
BitReconstruction();
F(X[0], X[1], X[2]);
keystream[i] = W ^ X[3]; //一次密钥流生成
LFSRWithWorkMode();
}
return keystream;
} int main()
{
int i = 0, keylen = 0;
uint8 key[16] = { 0 };
uint8 iv[16] = { 0 }; char k[50] = { 0 };
char v[50] = { 0 };
char tmp[2] = { 0 };
printf("key: ");
scanf("%s", k);
printf("iv: ");
scanf("%s", v);
printf("keylen : ");
scanf("%d", &keylen);
for (i = 0; i < 16; i++)
{
key[i] = (((k[2 * i] <= '9') ? (k[2 * i] - '0') : (k[2 * i] - 'a' + 10)) << 4) +
((k[2 * i + 1] <= '9') ? (k[2 * i + 1] - '0') : (k[2 * i + 1] - 'a' + 10));
iv[i] = (((v[2 * i] <= '9') ? (v[2 * i] - '0') : (v[2 * i] - 'a' + 10)) << 4) +
((v[2 * i + 1] <= '9') ? (v[2 * i + 1] - '0') : (v[2 * i + 1] - 'a' + 10));
} Init(key, iv);
uint32* keylist = KeyStream_Generator(keylen);
printf("\n输出密钥流:\n");
for (i = 0; i < keylen; i++)
{
printf("KeyStream[%d]=%08x\n",i,keylist[i]);
}
printf("\n");
system("pause");
return 0;
}
代码2
#include "zuc.h" unsigned int AddMod(unsigned int a, unsigned int b)
{
unsigned int c = a + b;
if (c >> 31)
{
c = (c & 0x7fffffff) + 1;
}
return c;
} unsigned int PowMod(unsigned int x, unsigned int k)
{
return (((x << k) | (x >> (31 - k))) & 0x7fffffff);
} unsigned int L1(unsigned int X)
{
return X ^ ZUC_rotl32(X, 2) ^ ZUC_rotl32(X, 10) ^ ZUC_rotl32(X, 18) ^ ZUC_rotl32(X, 24);
}
unsigned int L2(unsigned int X)
{
return X ^ ZUC_rotl32(X, 8) ^ ZUC_rotl32(X, 14) ^ ZUC_rotl32(X, 22) ^ ZUC_rotl32(X, 30);
} unsigned char BitValue(unsigned int M[], unsigned int i)
{
int j, k;
j = i >> 5;
k = i & 0x1f;
if (M[j] & (0x1 << (31 - k)))
return 1;
else
return 0;
} unsigned int GetWord(unsigned int k[], unsigned int i) //获取字串中的从第i个比特值开始的字
{
int j, m;
unsigned int word;
j = i >> 5;
m = i & 0x1f;
if (m == 0)
word = k[j];
else
word = (k[j] << m) | (k[j + 1] >> (32 - m));
return word;
}
void LFSRWithInitMode(unsigned int LFSR_S[], unsigned int u)
{
unsigned int v = LFSR_S[0], i;
v = AddMod(v, PowMod(LFSR_S[15], 15));
v = AddMod(v, PowMod(LFSR_S[13], 17));
v = AddMod(v, PowMod(LFSR_S[10], 21));
v = AddMod(v, PowMod(LFSR_S[4], 20));
v = AddMod(v, PowMod(LFSR_S[0], 8)); for (i = 0; i < 15; i++)
{
LFSR_S[i] = LFSR_S[i + 1];
}
LFSR_S[15] = AddMod(v, u); if (!LFSR_S[15])
{
LFSR_S[15] = 0x7fffffff;
}
} void LFSRWithWorkMode(unsigned int LFSR_S[])
{
unsigned int v = LFSR_S[0], i;
v = AddMod(v, PowMod(LFSR_S[15], 15));
v = AddMod(v, PowMod(LFSR_S[13], 17));
v = AddMod(v, PowMod(LFSR_S[10], 21));
v = AddMod(v, PowMod(LFSR_S[4], 20));
v = AddMod(v, PowMod(LFSR_S[0], 8)); for (i = 0; i < 15; i++)
{
LFSR_S[i] = LFSR_S[i + 1];
}
LFSR_S[15] = v; if (!LFSR_S[15])
{
LFSR_S[15] = 0x7fffffff;
}
} void BR(unsigned int LFSR_S[], unsigned int BR_X[])
{
BR_X[0] = ((LFSR_S[15] & 0x7fff8000) << 1) | (LFSR_S[14] & 0x0000ffff);
BR_X[1] = ((LFSR_S[11] & 0x0000ffff) << 16) | ((LFSR_S[9] & 0x7fff8000) >> 15);
BR_X[2] = ((LFSR_S[7] & 0x0000ffff) << 16) | ((LFSR_S[5] & 0x7fff8000) >> 15);
BR_X[3] = ((LFSR_S[2] & 0x0000ffff) << 16) | ((LFSR_S[0] & 0x7fff8000) >> 15);
} unsigned int F(unsigned int BR_X[], unsigned int F_R[])
{
unsigned int W, W1, W2; W = (BR_X[0] ^ F_R[0]) + F_R[1];
W1 = F_R[0] + BR_X[1];
W2 = F_R[1] ^ BR_X[2];
F_R[0] = L1((W1 << 16) | (W2 >> 16));
F_R[0] = (ZUC_S0[(F_R[0] >> 24) & 0xFF]) << 24 | (ZUC_S1[(F_R[0] >> 16) & 0xFF]) << 16 | (ZUC_S0[(F_R[0] >> 8) & 0xFF]) << 8 | (ZUC_S1[F_R[0] & 0xFF]);
F_R[1] = L2((W2 << 16) | (W1 >> 16));
F_R[1] = (ZUC_S0[(F_R[1] >> 24) & 0xFF]) << 24 | (ZUC_S1[(F_R[1] >> 16) & 0xFF]) << 16 | (ZUC_S0[(F_R[1] >> 8) & 0xFF]) << 8 | (ZUC_S1[F_R[1] & 0xFF]); return W;
} void ZUC_Init(unsigned int k[], unsigned int iv[], unsigned int LFSR_S[], unsigned int BR_X[], unsigned int F_R[])
{
unsigned char count = 32;
int i; //loading key to the LFSR s0,s1,s2....s15
printf("\ninitial state of LFSR: S[0]-S[15]\n");
for (i = 0; i < 16; i++)
{
LFSR_S[i] = ZUC_LinkToS(k[i], ZUC_d[i], iv[i]);
printf("%08x ", LFSR_S[i]);
} F_R[0] = 0x00; //R1
F_R[1] = 0x00; //R2 // 初始变量和秘钥状态完毕后,开始32轮初始化
while (count) //32 times
{
unsigned int W;
BR(LFSR_S, BR_X); //BitReconstruction
W = F(BR_X, F_R); //nonlinear function
LFSRWithInitMode(LFSR_S, W >> 1);
count--;
}
} void ZUC_Work(unsigned int LFSR_S[], unsigned int BR_X[], unsigned int F_R[], unsigned int pKeyStream[], int KeyStreamLen)
{
int i = 0;
BR(LFSR_S, BR_X);
F(BR_X, F_R);
LFSRWithWorkMode(LFSR_S);
printf("------------------------------------------------------------\n输出密钥流:\n");
while (i < KeyStreamLen)
{
BR(LFSR_S, BR_X);
pKeyStream[i] = F(BR_X, F_R) ^ BR_X[3];
printf("pKeyStream[%d]=%08x\n", i,pKeyStream[i]);
LFSRWithWorkMode(LFSR_S);
i++;
}
} void ZUC_GenKeyStream(unsigned int k[], unsigned int iv[], unsigned int KeyStream[], int KeyStreamLen)
{ unsigned int LFSR_S[16]; //LFSR state s0,s1,s2,...s15
unsigned int BR_X[4]; //Bit Reconstruction X0,X1,X2,X3
unsigned int F_R[2]; //R1,R2,variables of nonlinear function F
int i; //Initialisation
ZUC_Init(k, iv, LFSR_S, BR_X, F_R);
printf("\n------------------------------------------------------------\nstate of LFSR after executing initialization: S[0]-S[15]\n");
for (i = 0; i < 16; i++)
{
printf("%08x ", LFSR_S[i]);
}
printf("\n------------------------------------------------------------\ninternal state of Finite State Machine:\n");
printf("R1=%08x\n", F_R[0]);
printf("R2=%08x\n", F_R[1]); //Working
ZUC_Work(LFSR_S, BR_X, F_R, KeyStream, KeyStreamLen);
} int main()
{
int KeystreamLen, i;
unsigned int key[16] = {0};
unsigned int iv[16] = {0}; char k[50] = { 0 };
char v[50] = { 0 }; printf("key: ");
scanf("%s", k);
printf("IV : ");
scanf("%s", v);
printf("KeystreamLen : ");
scanf("%d", &KeystreamLen);
for (i = 0; i < 16; i++)
{
key[i] = (((k[2 * i] <= '9') ? (k[2 * i] - '0') : (k[2 * i] - 'a' + 10)) << 4) +
((k[2 * i + 1] <= '9') ? (k[2 * i + 1] - '0') : (k[2 * i + 1] - 'a' + 10));
iv[i] = (((v[2 * i] <= '9') ? (v[2 * i] - '0') : (v[2 * i] - 'a' + 10)) << 4) +
((v[2 * i + 1] <= '9') ? (v[2 * i + 1] - '0') : (v[2 * i + 1] - 'a' + 10));
} printf("\n开始生成秘钥流:\n------------------------------------------------------------");
ZUC_GenKeyStream(key, iv,Keystream, KeystreamLen);
}
生成结果
例子1
例子2
例子3
测试用例
key:00000000000000000000000000000000
iv:00000000000000000000000000000000 key:ffffffffffffffffffffffffffffffff
iv:ffffffffffffffffffffffffffffffff key:3d4c4be96a82fdaeb58f641db17b455b
iv:84319aa8de6915ca1f6bda6bfbd87c66
参考
1、ZUC国标
源码见github
ZUC-生成随机序列的更多相关文章
- r语言之生成随机序列,随机数生成函数及用法
(1)生成正态分布随机数: rnorm(n,mean,sd) 其中,n表示生成的随机数个数,mean表示正态分布均值,sd表示正态分布标准差 > rnorm(5,0,2)[1] -5.3 ...
- java Serializable 生成随机序列
如果你implements 了 Serializable接口 但是没写 UID,eclipse会在你的类名边上有一个警告,你点击一下,有一个选项自动生成 UID,所以请用eclipse写java代码
- Python_随机序列生成_白噪声
本文介绍如何利用Python自行生成随机序列,实现了 Whichmann / Hill 生成器. 参考: [1]Random Number Generation and Monte Carlo Met ...
- [OpenJudge 3066]随机序列
[OpenJudge 3066]随机序列 试题描述 Bob喜欢按照如下规则生成随机数: 第一步:令a[0] = S, 当n = 0: 第二步:a[n+1] = (a[n]*A+B)%P: 第三步:如果 ...
- 一个关于Random算法的问题
指定范围数字,生成随机序列,数字不连续:例如:范围[1-5] 输入 1 3 5 2 4 下面分享两种算法: 算法1:RmNum<RmNext 下面这种算法计算是无压力的 /// <sum ...
- DigitalOcean上SSH Key的创建(附DigitalOcean邀请)
DigitalOcean是一家云主机商家,最低配置512M内存,20G的SSD,每月只有5刀.半个月前刚刚在这上面买了一个VPS,创建Droplet的时候看见创建SSH Key的时候就有点懵,不知道这 ...
- FormsAuthentication详解
配置安全鉴别 鉴别是指鉴定来访用户是否合法的过程.ASP.NET Framework支持三种鉴别类型: Windows鉴别: NET Passport鉴别: Forms鉴别. 对于某一特定的应用程序, ...
- Android Https
/** * HttpUrlConnection支持所有Https免验证,不建议使用 * * @throws KeyManagementException * @throws NoSuchAlgorit ...
- Matlab实现单(双)极性(不)归零码
Matlab实现单(双)极性(不)归零码 内容大纲 Matlab实现单极性不归零波形(NRZ),0 1 幅值 Matlab实现单极性归零波形(RZ),0 1 幅值 Matlab实现双极性不归零波形,- ...
- 使用LINQ来简化编程的7个技巧
转载地址:http://www.cnblogs.com/lovecherry/archive/2008/05/23/1205565.html 自从学习LINQ以来,我发现了很多使用LINQ来改善代码的 ...
随机推荐
- Gitlab运维操作
部署 安装Postfix以发送通知邮件 yum install postfix 将postfix服务设置成开机自启动 systemctl enable postfix 启动postfix system ...
- Java net.sf.jxls 生成模板 并导出excel
如果是 maven项目需要引入下面这个就可以 <dependency> <groupId>net.sf.jxls</groupId> <artifactId& ...
- Nuxt.js 应用中的 vite:configResolved 事件钩子
title: Nuxt.js 应用中的 vite:configResolved 事件钩子 date: 2024/11/17 updated: 2024/11/17 author: cmdragon e ...
- ubuntu安装fish
换新电脑后需要安装fish命令行工具,发现总是apt install不成功,后来挂了代理才成功. 然后我想让这个fish的命令能自动导入我以前写的alias命令(点击这里),可是发现网上人家都说fis ...
- 读书笔记-C#8.0本质论-05
18.3 基于任务的异步编程模式 18.3.1 使用任务并行库(TPL)实现异步执行高延迟操作 using System; using System.Net.Http; using System.Th ...
- Solr 学习(5) —- Solr查询语法和参数
1.查询地址 建立好solr的索引后,可以通过管理界面进行查询.http://127.0.0.1:8983/solr/admin/form.jsp 要尝试多个查询方法的话,可以进入full inter ...
- 七、FreeRTOS学习笔记-中断管理
FreeRTOS学习笔记-中断管理 中断:让CPU打断正常运行的程序,转而去处理紧急的事件(程序) 中断执行机制,可简单概括为三步: 1.中断请求:外设产生中断请求(GPIO外部中断.定时器中断等) ...
- golang之常用方法/函数
1. io.Reader转化为字符串, byte切片 import "bytes" func StreamToByte(stream io.Reader) []byte { buf ...
- RabbitMQ接入之PHP
上一篇记录下RabbitMQ的安装与管理界面,接下来开始看PHP是如何接入的 1.安装php-amqplib php-amqplib是一个纯PHP库,使用它,基于PHP的脚本客户端就可以轻松的连接和操 ...
- 通过双 key 来解决缓存并发问题
我们在使用缓存的时候,不管Redis或者是Memcached,基本上都会遇到以下3个问题:缓存穿透.缓存并发.缓存集中失效.这篇文章主要针对[缓存并发]问题展开讨论,并给出具体的解决方案. 1.什么是 ...