手把手教你网络爬虫(爬取豆瓣电影top250,附带源代码)
概念
网络爬虫就是按照一定的规则,自动抓取互联网信息的程序或脚本。其本质就是模拟浏览器打开网页,获取网页中我们需要的数据。
基本流程
- 准备工作(构建流程)
- 获取数据
- 解析内容
- 保存数据
1. 准备工作
'''
#执行流程
def main(a):
print("hello",a)
main(2)
if __name__ == '__main__': #当程序执行时
main(1) #调用函数
'''
'''
#引入模块
#引入自定义的模块
# from test1 import t1
#引入系统的模块
import os
import sys
#引入第三方的模块
import re
'''
from bs4 import BeautifulSoup #网页解析,获取数据
import re #正则表达式,进行文字匹配
import urllib.request,urllib.error #制定url,获取网页数据
import xlwt #进行excel操作
import sqlite3 #进行sqlite数据库操作
下载第三方模块文件:file——setting——project——python interpreter—— +
2. 构建流程
def main():
baseurl = "https://movie.douban.com/top250"
#1.爬取网页
datalist = getData(baseurl)
savepath = ".\\豆瓣电影top250.xls"
#3.保存数据
saveData(savepath)
#爬取网页
def getData(baseurl):
datalist = []
# 2.逐一解析数据
return datalist
#保存数据
def saveData(savepath):
print("save....")
if __name__ == '__main__':
main()
3. 获取数据
#获取单个指定url网页的内容
def askUrl(url):
head = { #模拟浏览器头部信息,向豆瓣服务器发送消息
"User-Agent": "Mozilla / 5.0(Linux; Android 6.0; Nexus 5 Build / MRA58N) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 110.0.0.0 Mobile Safari / 537.36 Edg / 110.0.1587.50"
}
#用户代理:告诉豆瓣服务器我们是什么类型的机器、浏览器,本质上是告诉服务器,我们可以接受什么样的文件内容
request = urllib.request.Request(url,headers=head)
html = ""
try:
response = urllib.request.urlopen(request)
html = response.read().decode("utf-8")
print(html)
except urllib.error.URLError as e:
if hasattr(e,"code"):
print(e.code)
if hasattr(e,"reason"):
print(e.reason)
return html
4. 解析内容
#影片详情的规则
findLink = re.compile(r'<a href="(.*?)"')
#影片图片的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"',re.S)
#影片片名
findTitle = re.compile(r'<span class="title">(.*)</span>')
#影片的评分
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
#评价人数
findJudge = re.compile(r'<span>(\d*)人评价</span>')
#概况
findInq = re.compile(r'<span class="inq">(.*)</span>')
#影片相关内容
findBd = re.compile(r'<p class="">(.*?)</p>',re.S)
# 2.逐一解析数据
soup = BeautifulSoup(html,"html.parser")
for item in soup.find_all("div",class_ = "item"): #查找符合要求的字符串,形成列表
# print(item) #测试:查看电影item全部信息
# break
data = []
item = str(item)
#影片详情的链接
link = re.findall(findLink,item)[0] #re库通过正则表达式查找指定的字符串
data.append(link) #添加链接
imgSrc = re.findall(findImgSrc,item)[0]
data.append(imgSrc) #添加图片
titles = re.findall(findTitle,item) #名字可能只有中文名,没有外文名,需要区分一下
if len(titles) == 2:
ctitle = titles[0]
data.append(ctitle)
otitle = titles[1].replace("/","") #去掉无关符号
data.append(otitle)
else:
data.append(titles[0])
data.append(" ") #外文名留空
rating = re.findall(findRating,item)[0]
data.append(rating) #添加评分
judgeNum = re.findall(findJudge,item)[0]
data.append(judgeNum) #添加评价人数
inq = re.findall(findInq,item)
# data.append(inq) #添加概述
if len(inq) != 0:
inq = inq[0].replace("。","") #去掉句号
data.append(inq)
else:
data.append(" ") #留空
bd = re.findall(findBd,item)[0]
bd = re.sub("<br(\s+)?/>(s+)?"," ",bd)
bd = re.sub("/"," ",bd) #替换/
data.append(bd.strip()) #去掉前后空格
datalist.append(data) #把处理好的一部电影信息放入dataList
print(datalist)
return datalist
5.保存数据
(1)保存数据到excel
#保存数据
def saveData(datalist,savepath):
workbook = xlwt.Workbook(encoding="utf-8",style_compression=0)
worksheet = workbook.add_sheet("豆瓣电影top250",cell_overwrite_ok=True)
col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
for i in range(0,8):
worksheet.write(0,i,col[i]) #列名
for i in range(0,250):
print("第%d条"%(i+1))
data = datalist[i]
for j in range(0,8):
worksheet.write(i+1,j,data[j])
workbook.save(savepath)
(2)保存数据到SQLite
# savepath = "豆瓣电影top250.xls"
dbpath = "movie.db"
#3.保存数据
# saveData(datalist,savepath)
saveData2DB(datalist,dbpath)
def saveData2DB(datalist,dbpath):
init_db(dbpath)
conn = sqlite3.connect(dbpath)
cur = conn.cursor()
for data in datalist:
for index in range(len(data)):
if index == 4 or index == 5:
continue
data[index] = '"'+data[index]+'"'
sql = '''
insert into movie250(
info_link,pic_link,cname,ename,score,rated,introduction,info)
values(%s)'''%",".join(data)
cur.execute(sql)
conn.commit()
cur.close()
conn.close()
def init_db(dbpath):
sql = '''
create table movie250
(
id integer primary key autoincrement,
info_link text,
pic_link text,
cname varchar,
ename varchar,
score numeric,
rated numeric,
introduction text,
info text
)
''' #创建数据库
conn = sqlite3.connect(dbpath)
cursor = conn.cursor()
cursor.execute(sql)
conn.commit()
conn.close()
完整代码
from bs4 import BeautifulSoup #网页解析,获取数据
import re #正则表达式,进行文字匹配
import urllib.request,urllib.error #制定url,获取网页数据
import xlwt #进行excel操作
#影片详情的规则
findLink = re.compile(r'<a href="(.*?)"')
#影片图片的规则
findImgSrc = re.compile(r'<img.*src="(.*?)"',re.S)
#影片片名
findTitle = re.compile(r'<span class="title">(.*)</span>')
#影片的评分
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
#评价人数
findJudge = re.compile(r'<span>(\d*)人评价</span>')
#概况
findInq = re.compile(r'<span class="inq">(.*)</span>')
#影片相关内容
findBd = re.compile(r'<p class="">(.*?)</p>',re.S)
def main():
baseurl = "https://movie.douban.com/top250?start="
#1.爬取网页
datalist = getData(baseurl)
savepath = "豆瓣电影top250.xls"
#3.保存数据
saveData(datalist,savepath)
#爬取网页
def getData(baseurl):
datalist = []
for i in range(0,10):
url = baseurl + str(i * 25)
html = askUrl(url)
# 2.逐一解析数据
soup = BeautifulSoup(html,"html.parser")
for item in soup.find_all("div",class_ = "item"): #查找符合要求的字符串,形成列表
# print(item) #测试:查看电影item全部信息
# break
data = []
item = str(item)
#影片详情的链接
link = re.findall(findLink,item)[0] #re库通过正则表达式查找指定的字符串
data.append(link) #添加链接
imgSrc = re.findall(findImgSrc,item)[0]
data.append(imgSrc) #添加图片
titles = re.findall(findTitle,item) #名字可能只有中文名,没有外文名,需要区分一下
if len(titles) == 2:
ctitle = titles[0]
data.append(ctitle)
otitle = titles[1].replace("/","") #去掉无关符号
data.append(otitle)
else:
data.append(titles[0])
data.append(" ") #外文名留空
rating = re.findall(findRating,item)[0]
data.append(rating) #添加评分
judgeNum = re.findall(findJudge,item)[0]
data.append(judgeNum) #添加评价人数
inq = re.findall(findInq,item)
if len(inq) != 0:
inq = inq[0].replace("。","") #去掉句号
data.append(inq)
else:
data.append(" ") #留空
bd = re.findall(findBd,item)[0]
bd = re.sub("<br(\s+)?/>(s+)?"," ",bd)
bd = re.sub("/"," ",bd) #替换/
data.append(bd.strip()) #去掉前后空格
datalist.append(data) #把处理好的一部电影信息放入dataList
print(datalist)
return datalist
#获取单个指定url网页的内容
def askUrl(url):
head = { #模拟浏览器头部信息,向豆瓣服务器发送消息
"User-Agent": "Mozilla / 5.0(Linux; Android 6.0; Nexus 5 Build / MRA58N) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 110.0.0.0 Mobile Safari / 537.36 Edg / 110.0.1587.50"
}
#用户代理:告诉豆瓣服务器我们是什么类型的机器、浏览器,本质上是告诉服务器,我们可以接受什么样的文件内容
request = urllib.request.Request(url,headers=head)
html = ""
try:
response = urllib.request.urlopen(request)
html = response.read().decode("utf-8")
# print(html)
except urllib.error.URLError as e:
if hasattr(e,"code"):
print(e.code)
if hasattr(e,"reason"):
print(e.reason)
return html
#保存数据
def saveData(datalist,savepath):
workbook = xlwt.Workbook(encoding="utf-8",style_compression=0)
worksheet = workbook.add_sheet("豆瓣电影top250",cell_overwrite_ok=True)
col = ("电影详情链接","图片链接","影片中文名","影片外国名","评分","评价数","概况","相关信息")
for i in range(0,8):
worksheet.write(0,i,col[i]) #列名
for i in range(0,250):
print("第%d条"%(i+1))
data = datalist[i]
for j in range(0,8):
worksheet.write(i+1,j,data[j])
workbook.save(savepath)
if __name__ == '__main__':
main()
print("爬取完毕")
最后,整个爬虫就学完了,剩下的是前端页面展示。在此之前我还要总结一下爬虫的流程,总结出来的才是爬虫的精髓。另外,老师现在要求的数据都是保存程json,我却json是什么都不知道,感觉前路漫漫,步履维艰。现在web还在看MyBatis,公考进度几乎停滞,开学已经第四周。进度如此,心中多少有些悲怆。总之,还是抓紧抽时间总结,而且学的越深,进度越慢,自己要抓紧调整,考虑计划是否需要变动,一定要坚持!
手把手教你网络爬虫(爬取豆瓣电影top250,附带源代码)的更多相关文章
- python 爬虫&爬取豆瓣电影top250
爬取豆瓣电影top250from urllib.request import * #导入所有的request,urllib相当于一个文件夹,用到它里面的方法requestfrom lxml impor ...
- python3 爬虫---爬取豆瓣电影TOP250
第一次爬取的网站就是豆瓣电影 Top 250,网址是:https://movie.douban.com/top250?start=0&filter= 分析网址'?'符号后的参数,第一个参数's ...
- Python爬虫-爬取豆瓣电影Top250
#!usr/bin/env python3 # -*- coding:utf-8-*- import requests from bs4 import BeautifulSoup import re ...
- 一起学爬虫——通过爬取豆瓣电影top250学习requests库的使用
学习一门技术最快的方式是做项目,在做项目的过程中对相关的技术查漏补缺. 本文通过爬取豆瓣top250电影学习python requests的使用. 1.准备工作 在pycharm中安装request库 ...
- scrapy爬虫框架教程(二)-- 爬取豆瓣电影TOP250
scrapy爬虫框架教程(二)-- 爬取豆瓣电影TOP250 前言 经过上一篇教程我们已经大致了解了Scrapy的基本情况,并写了一个简单的小demo.这次我会以爬取豆瓣电影TOP250为例进一步为大 ...
- Python爬虫入门:爬取豆瓣电影TOP250
一个很简单的爬虫. 从这里学习的,解释的挺好的:https://xlzd.me/2015/12/16/python-crawler-03 分享写这个代码用到了的学习的链接: BeautifulSoup ...
- urllib+BeautifulSoup无登录模式爬取豆瓣电影Top250
对于简单的爬虫任务,尤其对于初学者,urllib+BeautifulSoup足以满足大部分的任务. 1.urllib是Python3自带的库,不需要安装,但是BeautifulSoup却是需要安装的. ...
- python爬虫 Scrapy2-- 爬取豆瓣电影TOP250
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- Scrapy中用xpath/css爬取豆瓣电影Top250:解决403HTTP status code is not handled or not allowed
好吧,我又开始折腾豆瓣电影top250了,只是想试试各种方法,看看哪一种的方法效率是最好的,一直进行到这一步才知道 scrapy的强大,尤其是和selector结合之后,速度飞起.... 下面我就采用 ...
- python2.7爬取豆瓣电影top250并写入到TXT,Excel,MySQL数据库
python2.7爬取豆瓣电影top250并分别写入到TXT,Excel,MySQL数据库 1.任务 爬取豆瓣电影top250 以txt文件保存 以Excel文档保存 将数据录入数据库 2.分析 电影 ...
随机推荐
- 【BUG】axios 长数字精度丢失问题
问题原因 出现改问题是于javascript 整数范围问题 java 中 Long 类型 -2的63次方 - 2的63次方减去1 但是javascript整数范围确没有那么大,导致Long数字过大前端 ...
- 解决macOS无法验证“xxx”的开发者。你确定要打开它吗?
前言 当 macOS 无法验证开发者时,有两种方式解决,可以通过以下步骤来打开 xxx 系统偏好设置: 打开"系统偏好设置". 选择"安全性与隐私". 在&qu ...
- DBeaver连接mysql时Public Key Retrieval is not allowed错误
前言 DBeaver 连接 mysql 时,报错:Public Key Retrieval is not allowed 解决 在新建连接的时候,驱动属性里设置 allowPublicKeyRetri ...
- docker常见问题修复方法
一.运行容器报错:Error response from daemon: Error running DeviceCreate (createSnapDevice) dm_task_run faile ...
- Win7共享账号切换程序
服务器共享目录需要多账号登录时,需要重启电脑才可切换不同账号登 为了不重启电脑就可立即切换不同账号登,特意写了此款软件, 下载: 链接:https://pan.baidu.com/s/1g_4SCXl ...
- 阿里云ECS服务器Ubuntu下安装docker-ce技巧
官方文档 先来份Ubuntu 下安装 docker 的官方文档 -> Get Docker CE for Ubuntu 官方文档的安装方式是最靠谱的,但是对于国内的小伙伴来说墙是硬伤... 国内 ...
- Visual Studio 中的 .sln 和 .suo 文件
解决方案文件1 Visual Studio 采用两种文件类型 .sln & .suo 来存储特定于解决方案的设置.这些文件总称为解决方案文件,为解决方案资源管理器提供显示管理文件的图形接口所需 ...
- 2024 (ICPC) Jiangxi Provincial Contest -- Official Contest
L. Campus 1.首先考虑时间复杂度,因为最多只会有2*k的时间点,所以我们采取的策略是,对这每个时刻,判断有多少扇门是开的,并且考虑这些门到其他点的最短路之和. 2.输入完数据以后,使用dij ...
- arthas安装和简单使用
介绍 Arthas 是一款线上监控诊断产品,通过全局视角实时查看应用 load.内存.gc.线程的状态信息,并能在不修改应用代码的情况下,对业务问题进行诊断,包括查看方法调用的出入参.异常,监测方法执 ...
- .net WorkFlow 流程介绍
WikeFlow官网:www.wikesoft.com WikeFlow学习版演示地址:workflow.wikesoft.com WikeFlow学习版源代码下载:https://gitee.com ...