状压DP/01背包


  Orz Gromah

  容易发现m的范围很小……只有16,那么就可以状压,用一个二进制数来表示买了的物品的集合。

  一种简单直接的想法是:令$f[i][j]$表示前$i$个商店买了状态集合为$j$的商品的最小代价,那么我们转移的时候就需要枚举在第$i$个商店买了哪些商品吗,这样的话带上枚举子集,复杂度就会变成$O(n*3^m)$,并不是我们能够忍受的……

  那么怎么搞呢?我们每次转移的时候,不再枚举子集,而是搞一个类似01背包的东西:(以下来自Gromah)

  我们首先令$f[i][j]=f[i-1][j]+d[i]$,表示到达第$i$个商店。

  然后枚举每个状态$j$,以及每个不在$j$里的物品$k$,令:$$f[i][j+\{k\}]=min(f[i][j+\{k\}],f[i][j]+cost[i][k])$$

  这个过程就相当于是进行了一次01背包。

  最后还要令$f[i][j]=min(f[i][j],f[i-1][j])$看看在商店$i$时的购买计划是否划算。

  时间复杂度$O(nm2^m)$,空间复杂度$O(n2^m)$。

 /**************************************************************
Problem: 4145
User: Tunix
Language: C++
Result: Accepted
Time:6948 ms
Memory:29440 kb
****************************************************************/ //BZOJ 4145
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
inline int getint(){
int r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-;
for(; isdigit(ch);ch=getchar()) v=v*-''+ch;
return r*v;
}
const int N=,M=<<,INF=0x3f3f3f3f;
/*******************template********************/ int n,m,f[N][M],d[N],c[N][];
int main(){
#ifndef ONLINE_JUDGE
freopen("4145.in","r",stdin);
freopen("4145.out","w",stdout);
#endif
n=getint(); m=getint();
F(i,,n){
d[i]=getint();
rep(j,m) c[i][j]=getint();
}
rep(j,<<m) f[][j]=INF;
f[][]=;
F(i,,n){
rep(j,<<m) f[i][j]=f[i-][j]+d[i];
rep(j,<<m) rep(k,m){
int s=<<k;
if ((j&s)==) f[i][j^s]=min(f[i][j^s],f[i][j]+c[i][k]);
}
rep(j,<<m) f[i][j]=min(f[i][j],f[i-][j]);
}
printf("%d\n",f[n][(<<m)-]);
return ;
}

4145: [AMPPZ2014]The Prices

Time Limit: 20 Sec  Memory Limit: 256 MB
Submit: 70  Solved: 47
[Submit][Status][Discuss]

Description

你要购买m种物品各一件,一共有n家商店,你到第i家商店的路费为d[i],在第i家商店购买第j种物品的费用为c[i][j],
求最小总费用。

Input

第一行包含两个正整数n,m(1<=n<=100,1<=m<=16),表示商店数和物品数。
接下来n行,每行第一个正整数d[i](1<=d[i]<=1000000)表示到第i家商店的路费,接下来m个正整数,
依次表示c[i][j](1<=c[i][j]<=1000000)。

Output

一个正整数,即最小总费用。
 

Sample Input

3 4
5 7 3 7 9
2 1 20 3 2
8 1 20 1 1

Sample Output

16

HINT

在第一家店买2号物品,在第二家店买剩下的物品。

Source

[Submit][Status][Discuss]

【BZOJ】【4145】【AMPPZ2014】The Prices的更多相关文章

  1. 【BZOJ 2754 喵星球上的点名】

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2512  Solved: 1092[Submit][Status][Discuss] Descript ...

  2. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  3. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  4. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  5. 【BZOJ】【1025】【SCOI2009】游戏

    DP/整数拆分 整个映射关系可以分解成几个循环(置换群的预备知识?),那么总行数就等于各个循环长度的最小公倍数+1(因为有个第一行的1~N).那么有多少种可能的排数就等于问有多少种可能的最小公倍数. ...

  6. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  7. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  8. 【BZOJ】【3697】采药人的路径&【3127】【USACO2013 Open】Yin and Yang

    点分治 Orz hzwer 倒是比较好想到点分治……然而在方案统计这里,我犯了两个错误…… 1.我比较傻逼的想的是:通过儿子来更新父亲,也就是统计以x为根的子树中xxxx的路径有多少条……这样转移. ...

  9. 【BZOJ】【3083】遥远的国度

    树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...

  10. 【BZOJ】【2434】【NOI2011】阿狸的打字机

    AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...

随机推荐

  1. 005.FTP本地用户访问

    一 新建本地用户 [root@imxhy ftp]# useradd ftpuser #用于登陆ftp的用户 [root@imxhy ftp]# passwd ftpuser Changing pas ...

  2. JAVA 图形界面开发基础详解

    与C的win32一样,JAVA也有自己的图形界面开发,将在此篇博客中对基础部分进行讲解. 1.Java提供的图形界面类有哪些? Java提供了两套图形界面 (1)AWT组建(基础) AWT组件是jdk ...

  3. 纯css滚动视差

    1.何为滚动视差 视差滚动(Parallax Scrolling)是指让多层背景以不同的速度移动,形成立体的运动效果,带来非常出色的视觉体验. 作为网页设计的热点趋势,越来越多的网站应用了这项技术.效 ...

  4. List,Set的区别

    1.List,Set都是继承自Collection接口2.List特点:元素有放入顺序,元素可重复 ,Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该 ...

  5. leetcode 岛屿的个数 python

      岛屿的个数     给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包 ...

  6. VM 操作系统实例化(基于 KVM 的虚拟化研究及应用--崔泽永(2011))的论文笔记

    一.VM操作系统实例化 1.建立虚拟磁盘镜像 虚拟磁盘镜像在逻辑上是提供给虚拟机使用的硬盘, 在物理上可以是 L inux系 统内一普通镜像文件, 也可以是真实的物理磁盘或分区. 本方案设计中将虚拟机 ...

  7. BZOJ4277 : [ONTAK2015]Cięcie

    假设分成如下三段: [1..i][i+1..j][j+1..n] 考虑中间那一段,设f[i]为前i位组成的数模q的值,pow[i]为$10^i$模q的值,那么有: f[j]-f[i]*pow[j-i] ...

  8. Token以及签名signature的设计与实现

    LZ第一次给app写开放接口,把自己处理Token的实现记录下来,目的是如果以后遇到好的实现,能在此基础上改进.这一版写法非常粗糙,写出来就是让大家批评的,多多指教,感谢大家. 当初设计这块想达到的效 ...

  9. PHP常用设计模式

    1.单例模式指在整个应用中只有一个对象实例的设计模式 class Single { public $rand; static private $instance; // 类直接调用 final pri ...

  10. svn简单记录

    记录一下工作中常用到的svn命令 一.文件的提交流程 1.svn up   // 先更新本地文件 2.svn st   // svn status 查看要提交的文件 3.#svn ci -m &quo ...