Expert Systems.

The enterprise is typically composed of expert systems that perform core business functions and perform them well.  A retail system consists of points of sale systems, e-commerce websites, inventory management systems, accounting systems, marketing systems, customer service systems, advertising systems and business analytics.  Each supports a core function, and the primary business process ties them all together to execute its main use case.

In addition to these business expert systems, there are a number of process oriented expert systems that take care of security, notifications, logging, search, exception management, monitoring, management etc.

In a distributed environment, the most common way to interact with expert systems is using webservices, file transfers, shared databases, or including references to expert components in an application.  The problem with most of these methods is that they strongly couple the systems to each other.  The webservice has to be available when the application needs it and if it's not there, can cause cascading failures downstream.   These failures can lead to data loss or require the development of expensive, complex, redundant systems that can handle these failures and recover at later times.  Managing changes to expert components that are referenced by other applications is very difficult, often requiring versioning when interfaces change, rebuilding dependent applications to accommodate changes, or having system wide downtimes to upgrade just one expert system.  In an enterprise, this can get out of hand very quickly.

Ideally you want to loosely couple these expert systems.  In addition to using webservices or referencing expert components directly in an application, we can add advanced messaging to our arsenal and add some stability to the system. Messaging has been around for a very long time and has a wide and varied implementation base, but it's features are limited. Advanced messaging adds several important features that change the way we use messaging, it's basically messaging re-engineered from the bottom up.

One important feature of the advanced messaging protocol is that it applies the publisher/subscriber pattern to message queues.  In the typical queue architecture an application puts a message on the queue specifically for another application who picks it up and processes the work, responding perhaps on another queue.  In the exchange model, an application puts a message in an exchange and provides a routing topic (publishing).  An application can listen to an exchange using a specific subscription key  (subscribing).  The exchange acts as a broker and matches routing keys to subscription keys.  When a match is made the message is moved to as many subscribers as match the routing key.  This mechanism does one very important thing.  It completely decouples the publisher from the subscriber.  This has large implications for how the enterprise can be organized into expert systems.  
Distributed Systems
 
 
 The diagram above shows an example ecommerce website taking an order and fulfilling it with integration points between accounting, marketing and inventory management systems.   

When you compare advanced messaging to standard message queues, the main difference is the addition of an exchange.  On the surface this may seem like a small and insignificant change, but that one addition fundamentally changes the way we can architect the enterprise.  Perhaps the most complex of software systems, rich graphic, ui driven applications are all event driven.  The event driven systems allows various components in the UI landscape to change as the user changes the way they use the application, creating a very rich satisfying experience.  By comparison, enterprise systems have typically been standalone applications that communicate with other systems in a very linear, stochastic way where the weakest link truly defines the stability of the entire system.  By adding exchanges to the message bus, we've introduced an event model to the enterprise.  This will allow us to create a simple network of loosely coupled expert systems that is more stable and easier to manage that what we have had to date.  The following entries will explain how to build such a system with advanced messaging at its core.

架构:Introducing Expert Systems and Distributed Architecure的更多相关文章

  1. 分布式系统(Distributed System)资料

    这个资料关于分布式系统资料,作者写的太好了.拿过来以备用 网址:https://github.com/ty4z2008/Qix/blob/master/ds.md 希望转载的朋友,你可以不用联系我.但 ...

  2. 企业架构研究总结(36)——TOGAF企业连续体和工具之企业连续体构成及架构划分

    又回头看了之前文章的评论,本人也同样感慨这些文章的确像政治课本般的虚无缥缈,所以对费力看完却觉得无从下手的看官致以诚挚的歉意和理解,因为这个问题也同样困扰着笔者本人,而我能做的也只能是纸上谈兵.之前也 ...

  3. TOGAF企业连续体和工具之企业连续体构成及架构划分

    TOGAF企业连续体和工具之企业连续体构成及架构划分 又回头看了之前文章的评论,本人也同样感慨这些文章的确像政治课本般的虚无缥缈,所以对费力看完却觉得无从下手的看官致以诚挚的歉意和理解,因为这个问题也 ...

  4. 阿里十年架构经验总结的Java学习体系

    Java学习这一部分其实是今天的重点,这一部分用来回答很多群里的朋友所问过的问题,那就是我你是如何学习Java的,能不能给点建议?今天我是打算来点干货,因此咱们就不说一些学习方法和技巧了,直接来谈每个 ...

  5. Build Telemetry for Distributed Services之Jaeger

    github链接:https://github.com/jaegertracing/jaeger 官网:https://www.jaegertracing.io/ Jaeger: open sourc ...

  6. Github上的1000多本免费电子书重磅来袭!

    Github上的1000多本免费电子书重磅来袭!   以前 StackOverFlow 也给出了一个免费电子书列表,现在在Github上可以看到时刻保持更新的列表了. 瞥一眼下面的书籍分类目录,你就能 ...

  7. Github 的一个免费编程书籍列表

    Index Ada Agda Alef Android APL Arduino ASP.NET MVC Assembly Language Non-X86 AutoHotkey Autotools A ...

  8. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  9. [Z] 计算机类会议期刊根据引用数排名

    一位cornell的教授做的计算机类期刊会议依据Microsoft Research引用数的排名 link:http://www.cs.cornell.edu/andru/csconf.html Th ...

随机推荐

  1. jquery模型(外壳实现)

    详细解释: 1.现在传入的参数是window,document,可以知道是它俩引用 2. 3. 4.每次调用jquery方法,都会创建一个实例,但是内存并没有暴涨,原因是:jquery里面new 的这 ...

  2. spring-mvc集成 swagger

    问题1:spring-mvc集成 swagger, 配置好后界面 404, 原因: dispatcher-servlet.xml 文件中, 要在这上面 <!-- 启用spring mvc 注解 ...

  3. 【论文阅读】HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis

    转载请注明出处:https://www.cnblogs.com/White-xzx/ 原文地址:https://arxiv.org/abs/1709.09930 Github: https://git ...

  4. 《高性能MySQL》学习笔记

    第1章 MySQL架构与历史 1.2 并发控制 MySQL在两个层面实现并发控制:服务器层与存储引擎层. 读锁和写锁: 在处理并发读或写时,可以通过实现一个由两种锁组成的系统来解决问题. 这两种锁通常 ...

  5. mysql5.6.34在默认配置文件修改字符集为utf8后重启mysql服务没效果

    1:事情是这样的,我下载了一个mysql5.6.34版本(windows版本的),下载下来后里面只有个my-default.ini,然后我就直接在my-default.ini 里面配置basedir, ...

  6. 【LOJ】#2510. 「AHOI / HNOI2018」道路

    题解 读题是做题关键 我们设\(dp[u][l][r]\)表示\(u\)节点上方没改\(l\)条公路和\(r\)条铁路 然后记忆化搜索,枚举这条点改左边还是右边 代码 #include <bit ...

  7. 【Android Studio】为Android Studio设置HTTP代理

    [Android Studio]为Android Studio设置HTTP代理   大陆的墙很厚很高,初次安装Android Studio下载SDK等必定失败,设置代理方法如下: 1. 到androi ...

  8. 002.Rsync详细配置项

    一 相关参数 全局参数 在文件中[module]之前的所有参数都是全局参数,当然也可以在全局参数部分定义模块参数,这时候该参数的值就是所有模块的默认值. port 指定后台程序使用的端口号,默认为87 ...

  9. Jmeter脚本录制方法(一)分别使用Badboy录制和Jmeter自带的代理服务器录制

    Jmeter录制方式分三种,分别是:使用Badboy录制.Jmeter自带的代理服务器录制和手工录制,今天先介绍前两种录制方法. Badboy录制 Badboy是用C++开发的动态应用测试工具, 其拥 ...

  10. 多线程学习笔记四之Condition实现分析

    目录 简介 等待队列 nextWaiter 源码分析 await() signal() signalAll() 总结 简介   在使用内置锁synchronized时,通过调用java.lang.Ob ...