P3629 [APIO2010]巡逻

题目描述

在一个地区中有 n 个村庄,编号为 1, 2, ..., n。有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄。每条道路的长度均为 1 个单位。 为保证该地区的安全,巡警车每天要到所有的道路上巡逻。警察局设在编号 为 1 的村庄里,每天巡警车总是从警察局出发,最终又回到警察局。 下图表示一个有 8 个村庄的地区,其中村庄用圆表示(其中村庄 1 用黑色的 圆表示),道路是连接这些圆的线段。为了遍历所有的道路,巡警车需要走的距 离为 14 个单位,每条道路都需要经过两次。

为了减少总的巡逻距离,该地区准备在这些村庄之间建立 K 条新的道路, 每条新道路可以连接任意两个村庄。两条新道路可以在同一个村庄会合或结束 (见下面的图例(c))。 一条新道路甚至可以是一个环,即,其两端连接到同一 个村庄。 由于资金有限,K 只能是 1 或 2。同时,为了不浪费资金,每天巡警车必须 经过新建的道路正好一次。 下图给出了一些建立新道路的例子:

在(a)中,新建了一条道路,总的距离是 11。在(b)中,新建了两条道路,总 的巡逻距离是 10。在(c)中,新建了两条道路,但由于巡警车要经过每条新道路 正好一次,总的距离变为了 15。 试编写一个程序,读取村庄间道路的信息和需要新建的道路数,计算出最佳 的新建道路的方案使得总的巡逻距离最小,并输出这个最小的巡逻距离。

输入输出格式

输入格式:

第一行包含两个整数 n, K(1 ≤ K ≤ 2)。接下来 n – 1 行,每行两个整数 a, b, 表示村庄 a 与 b 之间有一条道路(1 ≤ a, b ≤ n)。

输出格式:

输出一个整数,表示新建了 K 条道路后能达到的最小巡逻距离。

说明

10%的数据中,n ≤ 1000, K = 1;

30%的数据中,K = 1;

80%的数据中,每个村庄相邻的村庄数不超过 25;

90%的数据中,每个村庄相邻的村庄数不超过 150;

100%的数据中,3 ≤ n ≤ 100,000, 1 ≤ K ≤ 2。


遇到这种题当然选择手玩数据啦

我们发现:对于初始的树,每条边得经过两次,当连出一个环时,环上的边全都只经过了一次。

那么k=1的30分就拿到了,求出树的直径,统计答案即可。


k=2时,网上大多数的做法是把直径上的边权置-1再求一遍直径,我提供一种大同小异却麻烦一点的做法(可能对我来说比较好想吧)

对链上的每个点,我们以它为根做一遍树的直径,不经过直径上的点,统计出这颗子树的直径和它的最大深度。

直径可以直接更新答案,但这样并不全,可能会有以下一种情况

黄链为直径,而紫链为第二次连出的环。

最大深度就在这时候用一下,从左至右扫描一遍直径,用单调队列维护当前最优深度(记得减去原本在直径上的边),更新答案即可


Code:

#include <cstdio>
#include <cstring>
int max(int x,int y){return x>y?x:y;}
const int N=100010;
int head[N],to[N<<1],next[N<<1],F[N],cnt,dis[N],mx,mxl,l,r,n,k,q[N][2],is[N],f[N];
void add(int u,int v)
{
to[++cnt]=v;next[cnt]=head[u];head[u]=cnt;
}
void dfs1(int now,int len,int fa)
{
if(len>mxl)
{
l=now;
mxl=len;
}
for(int i=head[now];i;i=next[i])
{
int v=to[i];
if(!is[v]&&fa!=v)
dfs1(v,len+1,now);
}
}
void dfs2(int now,int len,int fa)
{
if(mx<len)
{
r=now;
mx=len;
}
for(int i=head[now];i;i=next[i])
{
int v=to[i];
if(!is[v]&&fa!=v)
{
f[v]=now;
dfs2(v,len+1,now);
}
}
}
void get_d(int s)
{
mx=0,mxl=0,l=0,r=0;
dfs1(s,0,0);
is[s]=0;
dfs2(l,0,0);
is[s]=1;
}
int main()
{
scanf("%d%d",&n,&k);
int u,v;
for(int i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
get_d(1);
is[1]=0;
int L=l,R=r,D=mx,ans=0;
if(k>1)
{
int now=R;
while(now)
{
is[now]=1;
F[now]=f[now];
now=f[now];
}
for(int i=1;i<=n;i++)
if(is[i])
{
get_d(i);
dis[i]=mxl;
ans=max(ans,mx);
}
now=R;
int cntt=1,ll=1,rr=0;
memset(q,-0x3f,sizeof(q));
while(now)
{
if(ll<=rr)
ans=max(ans,q[ll][0]-cntt+q[ll][1]+dis[now]);
while(ll<=rr&&dis[now]>=q[ll][0]-cntt+q[ll][1]) ll++;
q[++rr][0]=dis[now],q[rr][1]=cntt;
cntt++;
now=F[now];
}
}
ans+=D;
printf("%d\n",(n-1<<1)+k-ans);
return 0;
}

2018.6.28

洛谷 P3629 [APIO2010]巡逻 解题报告的更多相关文章

  1. [洛谷P3629] [APIO2010]巡逻

    洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...

  2. 洛谷 P3629 [APIO2010]巡逻

    题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...

  3. 洛谷P3629 [APIO2010]巡逻(树的直径)

    如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\). 考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍.这时选择连接树的直径的两个端点显然是最优的. 难就 ...

  4. BZOJ1912或洛谷3629 [APIO2010]巡逻

    一道树的直径 BZOJ原题链接 洛谷原题链接 显然在原图上路线的总长为\(2(n-1)\). 添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍.所以为了使添加的边的贡献最大化,我们 ...

  5. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  6. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  7. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  8. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  9. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

随机推荐

  1. pycharm自动生成头文件注释

    1.在file->settings->file and code templates->python script即可自定制pycharm创建文件自动生成的头文件注释信息 2.创建p ...

  2. C# Language Specification 5.0 (翻译)第二章 词法结构

    程序 C# 程序(program)由至少一个源文件(source files)组成,其正式称谓为编译单元(compilation units)[1].每个源文件都是有序的 Unicode 字符序列.源 ...

  3. pandas 初识(三)

    Python Pandas 空值 pandas 判断指定列是否(全部)为NaN(空值) import pandas as pd import numpy as np df = pd.DataFrame ...

  4. Salesforce随笔: 将Visualforce Page渲染为PDF文件(Render a Visualforce Page as a PDF File)

    参照 : Visualforce Developer Guide 第60页 <Render a Visualforce Page as a PDF File> 你可以用PDF渲染服务生成一 ...

  5. OD之修改文件标题(一)

    OD是逆向工程中的一个重要工具,逆向工程调试说明具体请参考:百度百科,OD介绍,当然就我了解而言,俗话就是破解软件,市面上的什么破解版,精简版啥的基本都是通过这种技术的,但是这并不能一概而论说逆向工程 ...

  6. VMware在Centos7上配置静态IP的方法

    使用NAT模式 在这里记下192.168.161.2 进入系统,为系统自动分配一个ip 记录下 192.168.161.129 进入网络管理器配置文件目录 cd /etc/sysconfig/netw ...

  7. linux第十八章学习笔记

    第十八章 调试 内核级开发的调试工作远比用户级开发艰难,它带来的风险比用户级别更高. 一.准备开始 1. 准备工作需要: 一个bug 一个藏匿bug的内核版本 相关内核代码的知识和运气 2. 在用户级 ...

  8. 【MOOC EXP】Linux内核分析实验五报告

    程涵  原创博客 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 分析system_call中断处理过程 ...

  9. Inside the Social Network’s (Datacenter) Network

    摘要: 大量服务提供商投资越来越多的更大数据中心来保证基础计算需求以支持他们的服务.因此,研究人员和行业从业者都集中了大量的努力设计网络结构有效互连和管理流量以保证这些数据中心的性能.不幸的是,数据中 ...

  10. python 图像处理(从安装Pillow开始)

    python2.x及以下用的是PIL(图像处理库是 PIL(Python Image Library)),最新版本是 1.1.7  可在http://www.pythonware.com/produc ...