题目链接:CF原网  洛谷

题目大意:有 $n$ 个数,每个都不超过 $m$。一个三元组 $(a,b,c)$ 是合法的当且仅当 $a=b=c$ 或者 $a+1=b=c-1$。每个数只能用一次。问最多能凑出一个合法三元组。

$1\le n,m\le 10^6$。


首先我们发现对于一个 $x$,$(x,x+1,x+2)$ 不会出现超过 $2$ 次。因为 $3$ 个或以上的 $(x,x+1,x+2)$ 也可以被拆分成 $(x,x,x),(x+1,x+1,x+1),(x+2,x+2,x+2)$ 这几个三元组,而总个数不变。

那么就可以DP了。(smg???)

首先对序列开桶,设有 $cnt_i$ 个数是 $i$。

设 $dp_{i,j,k}$ 表示现在只考虑 $\le i$ 的数。其中我们规定以后还有 $j$ 个 $i$ 会被用到第二种二元组中,还有 $k$ 个 $i-1$ 会被用到第二种二元组中。

那么就可以知道,$0\le j,k\le 4$(具体原因下面会讲),$j$ 不能超过 $cnt_i$,$k$ 不能超过 $cnt_{i-1}$。

初始状态:$dp_{1,j,0}=(cnt_1-j)/3$。因为有 $j$ 个不能用到第一种三元组。

转移:$dp_{i,j,k}=\max(dp_{i-1,k+l,l}+l+(cnt_i-j-l)/3)$。

具体解释一下,我们枚举用多少个 $i-2$ 配成多少个 $(i-2,i-1,i)$(就是 $l$)。

$i-2$ 再怎么样,前面规定要用的也得用完了,所以转移前的状态第三维是 $l$。

转移后还有 $k$ 个 $i-1$ 要被用到第二种三元组,说明转移前规定了 $k+l$ 个。所以转移前的状态第二维是 $k+l$。

(这也解释了为什么要开到 $4$)

那么有 $l$ 个 $i$ 已经被用到第二种三元组,而有 $j$ 个 $i$ 被规定不能用到第一种三元组,所以至多可以多出 $(cnt_i-l-j)/3$ 个第一种三元组。

答案就是 $dp_{m,0,0}$。规定了以后要用的状态是无效的。

代码的话……由于我基本看着PBdalao的代码写的,所以相似度高达99%……不好意思放了……

CF1110D Jongmah(DP)的更多相关文章

  1. Codeforces 1110D Jongmah (DP)

    题意:你有n个数字,范围[1, m],你可以选择其中的三个数字构成一个三元组,但是这三个数字必须是连续的或者相同的,每个数字只能用一次,问这n个数字最多构成多少个三元组? 解析:首先我们容易发现,我们 ...

  2. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  3. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  4. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  5. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  6. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  7. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  8. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  9. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

随机推荐

  1. iscsi target tgt架构

    tgt是用户态实现的iscsi target,而iet(iscsi enterprise target)是在内核态实现的target,tgt相比于iet来说,因为其用户态实现,方便调试,新加入一些功能 ...

  2. Ubuntu学习总结-01 安装Ubuntu

    Ubuntu(友帮拓.优般图.乌班图)是一个以桌面应用为主的开源GNU/Linux操作系统,Ubuntu 是基于Debian GNU/Linux,支持x86.amd64(即x64)和ppc架构,由全球 ...

  3. Liunx-cp命令

    1. 复制当前目录的test文件夹 到/201904 目录 出现如下截图问题是因为test目录下还有文件,所以得加-r,使用递归拷贝.我现在用这个命令拷贝文件都加-r了,不管有文件还是没文件 2.复制 ...

  4. FakeID签名漏洞分析及利用(二)

    本文转自:http://blog.csdn.net/l173864930/article/details/38409521 继上一次Masterkey漏洞之后,Bluebox在2014年7月30日又公 ...

  5. 20155226 《网络对抗》Exp9 Web安全基础

    20155226 <网络对抗>Exp9 Web安全基础 实践过程 开启webgoat 输入java -jar webgoat-container-7.1-exec.jar 在浏览器输入lo ...

  6. 20155321 《网络攻防》 Exp9 Web安全基础

    20155321 <网络攻防> Exp9 Web安全基础 基础问题 SQL注入攻击原理,如何防御 原理:在事先定义好的SQL语句的结尾上添加额外的SQL语句(感觉一般是或上一个永真式),以 ...

  7. CS100.1x-lab3_text_analysis_and_entity_resolution_student

    这次作业叫Text Analysis and Entity Resolution,比前几次作业难度要大很多.相关ipynb文件见我github. 实体解析在数据清洗和数据整合中是一个很重要,且有难度的 ...

  8. vue中的单项数据流

    在VUE中,数据从父组件流向(传递)给子组件,只能单向绑定,在子组件内部不应该修改父组件传递过来的数据. 如果必须修改子组件中接收的数据,可以: 1. 作为data中局部数据,进行改动 2. 作为子组 ...

  9. R语言学习 第五篇:字符串操作

    文本数据存储在字符向量中,字符向量的每个元素都是字符串,而非单独的字符.在R中,可以使用双引号,或单引号表示字符. 一,字符串中的字符数量 函数nchar()用于获得字符串中的字符数量: > s ...

  10. 整理一些常用的前端CND加速库,VUE,Jquery,axios

    VUE https://cdn.staticfile.org/vue/2.2.2/vue.min.js Jquery https://cdn.bootcss.com/jquery/3.4.0/jque ...