【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)

题面

BZOJ

洛谷

题解

设\(f[i]\)表示深度为\(i\)的\(n\)元树个数。然后我们每次加入一个根节点,然后枚举它的子树的深度乘起来就好了。但是这样不好做,我们设\(f[i]\)表示深度至多为\(i\)的\(n\)元树个数,那么显然,\(f[i]=f[i-1]^n+1\),加一的原因是存在只有一个根节点的情况。最终的答案直接容斥一下就变成了\(f[d]-f[d-1]\)。写个高精度就好了,反正位数不多,乘法直接暴力就行。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,d;
struct BigInt
{
int s[2000],ws;
void init(){memset(s,0,sizeof(s));s[ws=1]=0;}
void output(){for(int i=ws;i;--i)printf("%d",s[i]);puts("");}
}f[20],One;
BigInt operator+(BigInt a,BigInt b)
{
int ws=max(a.ws,b.ws);
for(int i=1;i<=ws;++i)a.s[i]+=b.s[i];
for(int i=1;i<=ws;++i)a.s[i+1]+=a.s[i]/10,a.s[i]%=10;
while(a.s[ws+1])++ws,a.s[ws+1]+=a.s[ws]/10,a.s[ws]%=10;
a.ws=ws;return a;
}
BigInt operator-(BigInt a,BigInt b)
{
int ws=a.ws;
for(int i=1;i<=b.ws;++i)a.s[i]-=b.s[i];
for(int i=1;i<=ws;++i)if(a.s[i]<0)a.s[i]+=10,a.s[i+1]-=1;
while(!a.s[ws])--ws;
a.ws=ws;return a;
}
BigInt operator*(BigInt a,BigInt b)
{
BigInt ret;int ws=a.ws+b.ws;ret.init();
for(int i=1;i<=a.ws;++i)
for(int j=1;j<=b.ws;++j)
ret.s[i+j-1]+=a.s[i]*b.s[j];
for(int i=1;i<=ws;++i)ret.s[i+1]+=ret.s[i]/10,ret.s[i]%=10;
while(!ret.s[ws])--ws;
ret.ws=ws;return ret;
}
BigInt fpow(BigInt a,int b)
{
BigInt s;s.init();s.s[1]=1;
while(b){if(b&1)s=s*a;a=a*a;b>>=1;}
return s;
}
int main()
{
cin>>n>>d;f[0].init();f[0].s[1]=1;One.init();One.s[1]=1;
for(int i=1;i<=d;++i)f[i]=fpow(f[i-1],n)+One;
f[d]=f[d]-f[d-1];f[d].output();
return 0;
}

【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)的更多相关文章

  1. BZOJ1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 387[Submit][Status ...

  2. bzoj1089 [SCOI2003]严格n元树(dp+高精)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1899  Solved: 954[Submit][Statu ...

  3. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  4. BZOJ1089:[SCOI2003]严格n元树(DP,高精度)

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  5. BZOJ1089 [SCOI2003]严格n元树 【dp + 高精】

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  6. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  7. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

  8. SCOI2003 严格N元树

    SCOI2003 严格N元树 Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的 ...

  9. BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度

    题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...

随机推荐

  1. 小R的烦恼 BZOJ3280

    分析: 一开始一直Wa,发现是建图建错了,必须得拆点. S连i,流量为a[i],费用为0,i+n连T,流量同上,费用为0,之后i连i+1费用为0,流量为inf,之后S连n*2+i,流量为li,费用为0 ...

  2. Struts2_learning

    一.这是我学习struts2所做的一个记录,因为整个过程较为麻烦,所以,记录下来,以便以后使用 过程: 步骤: 1)dynamic web project 2)jars 3)struts.xml pa ...

  3. 没事做的Delphi版的俄罗斯方块游戏Demo

    源代码下载

  4. mfc 重载赋值运算符

    重载赋值运算符= 一.重载运算符格式 返回类型 operator 运算符 (参数); 如: bool operator=(char*s); int operator>(char*s); bool ...

  5. 11.8 开课二个月零四天 (Jquery)

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. 继承类中static数据值

    class A{ static int num = 1; public static void Display(){ System.out.println( num ); } } class B ex ...

  7. WinForm 随手记

    从今天开始咱们正式进入WinForm开发模式 首先很官方的介绍下什么是winform:客户端应用程序:C/S 这就是winform 有什么特别特别重要的特点呢:可以操作用户电脑上的文件 举个简单的例子 ...

  8. java十年,需要学会的Java开发体系

    阿里十年,只剩下这套Java开发体系了,链接:https://www.jianshu.com/p/ca6c4a73aac9

  9. Asp.Net_序列化、反序列化

    .net序列化及反序列化 在我们深入探讨C#序列化和反序列化之前我们先要明白什么是序列化,它又称串行化,是.NET运行时环境用来支持用户定义类型的流化的机制.序列化就是把一个对象保存到一个文件或数据库 ...

  10. 整理一些常用的前端CND加速库,VUE,Jquery,axios

    VUE https://cdn.staticfile.org/vue/2.2.2/vue.min.js Jquery https://cdn.bootcss.com/jquery/3.4.0/jque ...