BZOJ.4355.Play with sequence(线段树)
问题在于操作二。操作二可以拆分成:区间加\(C\)、区间(对\(0\))取\(\max\)。
注意到操作一的\(C\)都是非负数,即数列中不会出现负数,所以我们直接维护最小值和最小值出现的次数即可得到操作三的答案。
操作一的赋值和操作二的加都是模板。但是取\(\max\)会影响最小值的个数(某些\(>mn\)的值可能一起变成最小值)。
参照吉司机线段树,我们还需要维护严格次小值\(se\)。
进行\(\max(v)\)操作时,若\(mn[rt]\geq v\),则直接返回;若\(se[rt]>v>mn[rt]\),则直接打个\(\max\)标记;
若\(v\geq se[rt]>mn[rt]\),没办法做,只能继续递归子区间。
复杂度同吉司机线段树,可证明,为\(O(mlog^2n)\),实际表现常为\(O(mlogn)\)。(好像现在还没有人把它卡成\(log^2\)?)
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=3e5+5,INF=1e9+1;
const LL INFl=1e16;
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
struct Segment_Tree
{
#define S N<<2
#define ls rt<<1
#define rs rt<<1|1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int cnt[S],cov[S],sz[S];
LL add[S],tag[S],mn[S],se[S];
inline void Update(int rt)
{
int l=ls, r=rs;
mn[rt]=std::min(mn[l],mn[r]);
if(mn[l]<mn[r]) se[rt]=std::min(se[l],mn[r]), cnt[rt]=cnt[l];
else if(mn[l]>mn[r]) se[rt]=std::min(se[r],mn[l]), cnt[rt]=cnt[r];
else se[rt]=std::min(se[l],se[r]), cnt[rt]=cnt[l]+cnt[r];
}
inline void Cov(int x,int v)
{
add[x]=0, tag[x]=-INFl, cov[x]=v, cnt[x]=sz[x], mn[x]=v, se[x]=INFl;
}
inline void Add(int x,LL v)//LL!
{
add[x]+=v, mn[x]+=v;
if(se[x]!=INFl) se[x]+=v;
if(tag[x]!=-INFl/*!*/) tag[x]+=v;
}
inline void Max(int x,LL v)
{
mn[x]=std::max(mn[x],v), tag[x]=std::max(tag[x],v);
}
void PushDown(int rt)
{
if(cov[rt]!=INF) Cov(ls,cov[rt]), Cov(rs,cov[rt]), cov[rt]=INF;
if(add[rt]) Add(ls,add[rt]), Add(rs,add[rt]), add[rt]=0;
if(tag[rt]!=-INFl) Max(ls,tag[rt]), Max(rs,tag[rt]), tag[rt]=-INFl;
}
void Build(int l,int r,int rt)
{
cov[rt]=INF, tag[rt]=-INFl;
if(l==r)
{
cnt[rt]=sz[rt]=1;
mn[rt]=read(), se[rt]=INFl;
return;
}
int m=l+r>>1;
Build(lson), Build(rson);
Update(rt), sz[rt]=sz[ls]+sz[rs];
}
void Modify_Cov(int l,int r,int rt,int L,int R,int v)
{
if(L<=l && r<=R) {Cov(rt,v); return;}
PushDown(rt);
int m=l+r>>1;
if(L<=m) Modify_Cov(lson,L,R,v);
if(m<R) Modify_Cov(rson,L,R,v);
Update(rt);
}
void Modify_Add(int l,int r,int rt,int L,int R,int v)
{
if(L<=l && r<=R) {Add(rt,v); return;}
PushDown(rt);
int m=l+r>>1;
if(L<=m) Modify_Add(lson,L,R,v);
if(m<R) Modify_Add(rson,L,R,v);
Update(rt);
}
void Modify_Max(int l,int r,int rt,int L,int R,int v)
{
if(mn[rt]>=v) return;
if(L<=l && r<=R && se[rt]>v) {Max(rt,v); return;}
PushDown(rt);
int m=l+r>>1;
if(L<=m) Modify_Max(lson,L,R,v);
if(m<R) Modify_Max(rson,L,R,v);
Update(rt);
}
int Query(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) return mn[rt]?0:cnt[rt];
PushDown(rt);
int m=l+r>>1;
if(L<=m)
if(m<R) return Query(lson,L,R)+Query(rson,L,R);
else return Query(lson,L,R);
else return Query(rson,L,R);
}
}T;
int main()
{
int n=read(),m=read(); T.Build(1,n,1);
for(int opt,l,r; m--; )
{
opt=read(),l=read(),r=read();
if(opt==1) T.Modify_Cov(1,n,1,l,r,read());
else if(opt==2) T.Modify_Add(1,n,1,l,r,read()),T.Modify_Max(1,n,1,l,r,0);
else printf("%d\n",T.Query(1,n,1,l,r));
}
return 0;
}
BZOJ.4355.Play with sequence(线段树)的更多相关文章
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)
[BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...
- [BZOJ 2653] middle(可持久化线段树+二分答案)
[BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...
- bzoj 1537: [POI2005]Aut- The Bus 线段树
bzoj 1537: [POI2005]Aut- The Bus 先把坐标离散化 设f[i][j]表示从(1,1)走到(i,j)的最优解 这样直接dp::: f[i][j] = max{f[i-1][ ...
- Wow! Such Sequence!(线段树4893)
Wow! Such Sequence! Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸
D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- [BZOJ 3196] 213平衡树 【线段树套set + 树状数组套线段树】
题目链接:BZOJ - 3196 题目分析 区间Kth和区间Rank用树状数组套线段树实现,区间前驱后继用线段树套set实现. 为了节省空间,需要离线,先离散化,这样需要的数组大小可以小一些,可以卡过 ...
- hdu4893Wow! Such Sequence! (线段树)
Problem Description Recently, Doge got a funny birthday present from his new friend, Protein Tiger f ...
- BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )
线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...
随机推荐
- vue中assets文件夹与static文件夹的区别
1.如果这些产品图片文件“万年不变”,放在 /static 目录里,(不需要使用require将这些图片作为模块来引用) var products = [{ img: '/static/img/pro ...
- Spark记录-spark-submit学习
#查看帮助:./bin/spark-submit --help ./bin/spark-shell --help 用法1: spark-submit [options] <app jar | ...
- 机器学习算法整理(七)支持向量机以及SMO算法实现
以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法A还 ...
- html canvas非正方旋转和缩放...写的大多是正方的有人表示一直看正方的看厌了
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Firefox滚动残影(转)
Firefox滚动残影 Firefox滚动残影这文章放在草稿箱有一阵子了,之前的3系列都有这BUG,当正想发表这文章的时候,和我沟通刚刚升级的FF4已修复此BUG,所以搁置一阵在考虑到这文章还有没 ...
- Chrome插件LiveStyle结合Sublime Text3编辑器实现高效可视化开发
LiveStyle是Chrome中提高开发效率的一款CSS编辑器插件.利用LiveStyle和Sublime Text3编辑器结合可实现可视化开发,一次配置,简单易用! 本文由前端交流QQ群管理员—— ...
- 无法执行该操作,因为链接服务器 "xxxxx" 的 OLE DB 访问接口 "SQLNCLI" 无法启动分布式事务
在存储过程中使用事务,并且使用链接服务器时,报类似下面的错误 链接服务器"****"的 OLE DB 访问接口 "SQLNCLI10" 返回了消息 " ...
- 让浏览器重新下载css文件,解决不刷新缓存的问题
网站页面源代码中的css文件和js文件后面带一个问号,后面跟着一连串数字或字符,问号起不到实际作用,仅能当作后缀,如果用问号加参数的方法,可以添加版本号等信息 它的作用有:1.作为版本号,让自己方便记 ...
- SqlMapConfig.xml全局配置文件介绍——(四)
----------mybatis的全局配置文件SqlMapConfig.xml,配置内容如下:----------- properties(属性) settings(全局配置参数) typeAlia ...
- centos6 安装EPEL
一.安装 32位系统: rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm rpm --i ...