有标号的DAG图计数1~4
前言
我什么都不会,菜的被关了起来。
有标号的DAG图I
Solution
考虑递推,设\(f_i\)表示i个点的答案,显然这个东西是可以组合数+容斥递推?
设\(f_i\)表示i个点的答案,我们考虑假设现在有j个点入度为1,那么可以选出的点就是一个组合数\(C_i^j\),边的可能性有两种,对应的就是\(2^{j*(i-j)}\),然后接着搞,肯定这样子算会有重复的,所以容斥一下然后和以前的答案乘起来就好了。
\(f_i=\sum_{j=1}^{i}f_{i-j}*-1^{j-1}*C_i^j*2^{j*(i-j)}\)
然后就可以递推了。
上面虽然不是瞎扯,但是完全过不了本题 90分了解一下
所以需要运用的是什么?
当然是预处理啊(辣鸡出题人卡常数)
代码实现
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi(){
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
const int Mod=1e4+7;
int c[5010][5010],f[5010],two[25000010];
int main(){
re int n=gi();two[0]=1;
for(int i=1;i<=n*n/4;i++){
two[i]=two[i-1]<<1;
if(two[i]>=Mod)two[i]-=Mod;
}
c[0][0]=1;
for(re int i=1;i<=n;i++){
c[i][0]=1;
for(re int j=1;j<=n;j++){
c[i][j]=(c[i-1][j]+c[i-1][j-1]);
if(c[i][j]>=Mod)c[i][j]-=Mod;
}
}
f[0]=f[1]=1;
for(re int i=2;i<=n;i++)
for(re int j=1,d=1;j<=i;j++,d=-d){
f[i]+=(ll)(c[i][j]*f[i-j]%Mod*two[j*(i-j)]%Mod*d)%Mod;
while(f[i]<0)f[i]+=Mod;
while(f[i]>=Mod)f[i]-=Mod;
}
printf("%d\n",f[n]);
return 0;
}
有标号的DAG图计数II
Solution
考虑上面的式子怎么搞?
发现如果想要卷积优化肯定只能够把2的次方拆开啊。
\[
j*(i-j)=i*j-j^2
\\
=\frac{i^2}{2}-\frac{j^2}{2}-\frac{(i-j)^2}{2}
\]
化成这个形式直接二次剩余随便搞就好了。
P.S:如果不会多项式求逆就看这个
代码实现
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
const int N=300010,Mod=998244353,REM=882049182;
int r[N],c[N],F[N],G[N],inv[N],jc[N],jcn[N];
int qpow(int a,int b){int ret=1;while(b){if(b&1)ret=(ll)ret*a%Mod;a=(ll)a*a%Mod;b>>=1;};return ret;}
inline int gi(){
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
void NTT(int *P,int opt,int limit){
for(int i=0;i<limit;i++)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<limit;i<<=1){
int w=qpow(3,(Mod-1)/(i<<1));
for(int p=i<<1,j=0;j<limit;j+=p){
int W=1;
for(int k=0;k<i;k++,W=(1ll*W*w)%Mod){
int X=P[j+k],Y=(ll)P[i+j+k]*W%Mod;
P[j+k]=(X+Y)%Mod;P[i+j+k]=(X-Y+Mod)%Mod;
}
}
}
if(opt==-1){
reverse(P+1,P+limit);
for(int i=0,inv=qpow(limit,Mod-2);i<limit;i++)P[i]=1ll*P[i]*inv%Mod;
}
}
void Inv(int *a,int *b,int len){
if(len==1){b[0]=qpow(a[0],Mod-2);return;}
Inv(a,b,(len+1)>>1);
int l=0,limit=1;
while(limit<(len<<1))limit<<=1,l++;
for(int i=0;i<limit;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<limit;i++)c[i]=a[i];
for(int i=len;i<limit;i++)c[i]=0;
NTT(c,1,limit);NTT(b,1,limit);
for(int i=0;i<limit;i++)b[i]=1ll*(2-1ll*c[i]*b[i]%Mod+Mod)%Mod*b[i]%Mod;
NTT(b,-1,limit);
for(int i=len;i<limit;i++)b[i]=0;
}
int main(){
int n=gi();
jc[0]=jcn[0]=inv[1]=1;
for(int i=1;i<=n;i++)jc[i]=(ll)jc[i-1]*i%Mod;
for(int i=2;i<=n;i++)inv[i]=(ll)(Mod-Mod/i)*inv[Mod%i]%Mod;
for(int i=1;i<=n;i++)jcn[i]=(ll)jcn[i-1]*inv[i]%Mod;
G[0]=1;
int Limit=1;while(Limit<=n)Limit<<=1;int t=qpow(REM,Mod-2);
for(int i=1;i<Limit;i++)G[i]=1ll*jcn[i]*qpow(t,1ll*i*i%(Mod-1))%Mod;
for(int i=1;i<Limit;i++)if(i&1)G[i]=Mod-G[i];
Inv(G,F,Limit);
printf("%lld\n",1ll*F[n]*jc[n]%Mod*qpow(REM,1ll*n*n%(Mod-1))%Mod);
return 0;
}
有标号的DAG图计数1~4的更多相关文章
- 【合集】有标号的DAG图计数(合集)
[合集]有标号的DAG图计数(合集) orz 1tst [题解]有标号的DAG计数1 [题解]有标号的DAG计数2 [题解]有标号的DAG计数3 [题解]有标号的DAG计数4
- COGS 有标号的DAG/强连通图计数
COGS索引 一堆神仙容斥+多项式-- 有标号的DAG计数 I 考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的 ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- COGS2353 【HZOI2015】有标号的DAG计数 I
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 10007的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 25 提 ...
- 【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
随机推荐
- TFS SDK
vs2013 已包含. 可参考 TFS SDK: Connecting to TFS 2010 & TFS 2012 Programmatically http://geekswithblog ...
- python之Bottle框架
一.简单的Bottle框架 1)bottle框架简介 安装 pip install bottle Bottle是一个快速.简洁.轻量级的基于WSIG的微型Web框架. 此框架只由一个 .py 文件,除 ...
- [转]MySQL索引原理及慢查询优化
MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能出色,但所谓“好马配好鞍”,如何能够更好的使用它,已经成为开发工程师的必修课,我们经常会从职位 ...
- Spring Boot项目Maven Build报错的解决方法
问题1, [ERROR]Failed to execute goal org.apache.maven.plugins:maven-surefire-plugin:2.21.0:test (defau ...
- myeclipse cannot connect to vm
启动tomcat时,tomcat可以直接运行,而debug时弹出 解决方法:打开360安全卫士的功能大全找到修复网络(LSP)点击立即修复就可以使用debug
- C语言三种方法调用数组
#include <stdio.h> /********************************* * 方法1: 第一维的长度可以不指定 * * 但必须指定第二维的长度 * *** ...
- Oracle数据库使用mybatis的时候,实体类日期为Date类型,mybatis里面定义的是Date类型,插入的时候,时分秒全部是12:00:00问题
实体类中日期定义的是Date类型的,没毛病: 我在mybatis里面定义的是Date类型的,进行测试的时候发现,数据库插入的日期的时分秒全部都是一样的,都是12:00:00,很郁闷: 后来把mybat ...
- Go语言高级特性总结——Struct、Map与JSON之间的转化
Struct与Map之间互相转换 // Struct2Map convert struct to map func Struct2Map(st interface{}) map[string]inte ...
- js,JavaScript 监听 判断 移动端 滑动事件
<script> var startx, starty; //获得角度 function getAngle(angx, angy) { return Math.atan2(angy, an ...
- IP之ALTIOBUF仿真
这里实现了差分转单端的功能. 问题:差分信号的电平是怎样的?如果像平常一样不设置Pin Planner中的电平的话,编译会报错. 在Pin Planner中做了如下设置: `timescale 1 n ...