原文地址:http://www.cnblogs.com/twjcnblog/archive/2011/09/07/2170306.html

参考资料:http://developer.51cto.com/art/201403/433874.htm

正如我们所知道的,Floyd算法用于求最短路径。Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3)。

Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

很简单吧,代码看起来可能像下面这样:

for ( int i = 0; i < 节点个数; ++i )
{
    for ( int j = 0; j < 节点个数; ++j )
    {
        for ( int k = 0; k < 节点个数; ++k )
        {
            if ( Dis[i][k] + Dis[k][j] < Dis[i][j] )
            {
                // 找到更短路径
                Dis[i][j] = Dis[i][k] + Dis[k][j];
            }
        }
    }
}

但是这里我们要注意循环的嵌套顺序,如果把检查所有节点X放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把i到j的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。

让我们来看一个例子,看下图:

图中红色的数字代表边的权重。如果我们在最内层检查所有节点X,那么对于A->B,我们只能发现一条路径,就是A->B,路径距离为9。而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。造成错误的原因就是我们把检查所有节点X放在最内层,造成过早的把A到B的最短路径确定下来了,当确定A->B的最短路径时Dis(AC)尚未被计算。所以,我们需要改写循环顺序,如下:

for ( int k = 0; k < 节点个数; ++k )
{
    for ( int i = 0; i < 节点个数; ++i )
    {
        for ( int j = 0; j < 节点个数; ++j )
        {
            if ( Dis[i][k] + Dis[k][j] < Dis[i][j] )
            {
                // 找到更短路径
                Dis[i][j] = Dis[i][k] + Dis[k][j];
            }
        }
    }
}

这样一来,对于每一个节点X,我们都会把所有的i到j处理完毕后才继续检查下一个节点。

那么接下来的问题就是,我们如何找出最短路径呢?这里需要借助一个辅助数组Path,它是这样使用的:Path(AB)的值如果为P,则表示A节点到B节点的最短路径是A->...->P->B。这样一来,假设我们要找A->B的最短路径,那么就依次查找,假设Path(AB)的值为P,那么接着查找Path(AP),假设Path(AP)的值为L,那么接着查找Path(AL),假设Path(AL)的值为A,则查找结束,最短路径为A->L->P->B。

那么,如何填充Path的值呢?很简单,当我们发现Dis(AX) + Dis(XB) < Dis(AB)成立时,就要把最短路径改为A->...->X->...->B,而此时,Path(XB)的值是已知的,所以,Path(AB) = Path(XB)。

好了,基本的介绍完成了,接下来就是实现的时候了,这里我们使用图以及邻接矩阵:

#define INFINITE 1000           // 最大值
#define MAX_VERTEX_COUNT 20   // 最大顶点个数
//////////////////////////////////////////////////////////////////////////
 
struct Graph
{
    int     arrArcs[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];    // 邻接矩阵
    int     nVertexCount;                                 // 顶点数量
    int     nArcCount;                                    // 边的数量
};
//////////////////////////////////////////////////////////////////////////

首先,我们写一个方法,用于读入图的数据:

void readGraphData( Graph *_pGraph )
{
    std::cout << "请输入顶点数量和边的数量: ";
    std::cin >> _pGraph->nVertexCount;
    std::cin >> _pGraph->nArcCount;
 
    std::cout << "请输入邻接矩阵数据:" << std::endl;
    for ( int row = 0; row < _pGraph->nVertexCount; ++row )
    {
        for ( int col = 0; col < _pGraph->nVertexCount; ++col )
        {
            std::cin >> _pGraph->arrArcs[row][col];
        }
    }
}

接着,就是核心的Floyd算法:

void floyd( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount )
{
    // 先初始化_arrPath
    for ( int i = 0; i < _nVertexCount; ++i )
    {
        for ( int j = 0; j < _nVertexCount; ++j )
        {
            _arrPath[i][j] = i;
        }
    }
    //////////////////////////////////////////////////////////////////////////
 
    for ( int k = 0; k < _nVertexCount; ++k )
    {
        for ( int i = 0; i < _nVertexCount; ++i )
        {
            for ( int j = 0; j < _nVertexCount; ++j )
            {
                if ( _arrDis[i][k] + _arrDis[k][j] < _arrDis[i][j] )
                {
                    // 找到更短路径
                    _arrDis[i][j] = _arrDis[i][k] + _arrDis[k][j];
 
                    _arrPath[i][j] = _arrPath[k][j];
                }
            }
        }
    }
}

OK,最后是输出结果数据代码:

void printResult( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount )
{
    std::cout << "Origin -> Dest   Distance    Path" << std::endl;
 
    for ( int i = 0; i < _nVertexCount; ++i )
    {
        for ( int j = 0; j < _nVertexCount; ++j )
        {
            if ( i != j )   // 节点不是自身
            {
                std::cout << i+1 << " -> " << j+1 << "\t\t";
                if ( INFINITE == _arrDis[i][j] )    // i -> j 不存在路径
                {
                    std::cout << "INFINITE" << "\t\t";
                }
                else
                {
                    std::cout << _arrDis[i][j] << "\t\t";
 
                    // 由于我们查询最短路径是从后往前插,因此我们把查询得到的节点
                    // 压入栈中,最后弹出以顺序输出结果。
                    std::stack<int> stackVertices;
                    int k = j;
                     
                    do
                    {
                        k = _arrPath[i][k];
                        stackVertices.push( k );
                    } while ( k != i );
                    //////////////////////////////////////////////////////////////////////////
 
                    std::cout << stackVertices.top()+1;
                    stackVertices.pop();
 
                    unsigned int nLength = stackVertices.size();
                    for ( unsigned int nIndex = 0; nIndex < nLength; ++nIndex )
                    {
                        std::cout << " -> " << stackVertices.top()+1;
                        stackVertices.pop();
                    }
 
                    std::cout << " -> " << j+1 << std::endl;
                }
            }
        }
    }
}

好了,是时候测试了,我们用的图如下:

测试代码如下:

int main( void )
{
    Graph myGraph;
    readGraphData( &myGraph );
    //////////////////////////////////////////////////////////////////////////
 
    int arrDis[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];
    int arrPath[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];
 
    // 先初始化arrDis
    for ( int i = 0; i < myGraph.nVertexCount; ++i )
    {
        for ( int j = 0; j < myGraph.nVertexCount; ++j )
        {
            arrDis[i][j] = myGraph.arrArcs[i][j];
        }
    }
 
    floyd( arrDis, arrPath, myGraph.nVertexCount );
    //////////////////////////////////////////////////////////////////////////
 
    printResult( arrDis, arrPath, myGraph.nVertexCount );
    //////////////////////////////////////////////////////////////////////////
 
    system( "pause" );
    return 0;
}

如图:

测试代码:VS2015 C#

            int[][] pathArray = new int[][];
int[][] pathResult = new int[][];
string strData = "";
for(int i=;i<;i++)
{
pathArray[i] = new int[];
pathResult[i] = new int[];
}
for(int i=;i<;i++)
{
for (int j = ; j < ; j++)
{
if(i==j)
{
pathArray[i][j] = ; }
else
{
pathArray[i][j] = -;
}
pathResult[i][j] = ;
strData += pathArray[i][j].ToString() + " ";
}
strData += Environment.NewLine;
}
strData += Environment.NewLine;
textBox1.Text = strData;
Random rr = new Random();
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
if(pathArray[i][j] == -)
{
pathArray[i][j] = rr.Next(,);
}
}
}
string strtt = "";
for (int k = ; k < ; k++)
{
for (int i = ; i < ; i++)
{
for (int j = ; j < ; j++)
{ if(i!=j)
{
if (pathArray[i][j] > pathArray[i][k] + pathArray[k][j])
{
pathArray[i][j] = pathArray[i][k] + pathArray[k][j];
pathResult[i][j] = (i+) * + (k+) * + (j+);
}
} }
}
}
for (int i = ; i < ; i++)
{
for (int j = ; j < ; j++)
{
if(i!=j)
{
strData += pathResult[i][j].ToString() + " ";
}
}
strData += Environment.NewLine;
}

(转)Floyd算法的更多相关文章

  1. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  2. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  3. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  4. floyd算法小结

    floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这 ...

  5. Uvaoj 10048 - Audiophobia(Floyd算法变形)

    1 /* 题目大意: 从一个点到达另一个点有多条路径,求这多条路经中最大噪音值的最小值! . 思路:最多有100个点,然后又是多次查询,想都不用想,Floyd算法走起! */ #include< ...

  6. Floyd算法(三)之 Java详解

    前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...

  7. Floyd算法(二)之 C++详解

    本章是弗洛伊德算法的C++实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明出处:http://www.cnblogs.c ...

  8. Floyd算法(一)之 C语言详解

    本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...

  9. 最短路径---Dijkstra/Floyd算法

    1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...

  10. 最短路径(Floyd)算法

    #include <stdio.h>#include <stdlib.h>/* Floyd算法 */#define VNUM 5#define MV 65536int P[VN ...

随机推荐

  1. C# to il 9 Properties and Indexers(属性和索引器)

    A field is simply a memory location, whereas, a property is a collection of methods. Aproperty is re ...

  2. C/S架构程序多种类服务器之间实现单点登录

    (一) 在项目开发的过程中,经常会出现这样的情况:我们的产品包括很多,以QQ举例,如登陆.好友下载.群下载.网络硬盘.QQ游戏.QQ音乐等,总不能要求用户每次输入用户名.密码吧,为解决这个问题,高手提 ...

  3. Grid Virtual Server 和 网格计算

    Grid Virtual Server 的 Virtual Server 源于 LVS (Linux Virtual Server) , LVS 的意思就是把 多个 Linux 服务器 联合起来构成一 ...

  4. Web 单点登录(SSO) 实现模型

    有网友问起, 前后端分离 架构下的  Web 单点验证 怎么做, 我画了个图 : Temp Token  就 相当于 短信验证码 . Web 单点登录 都可以用这个 模型, 不仅仅是 前后端分离 .

  5. [转]xargs详解

    为什么要用xargs,问题的来源 在工作中经常会接触到xargs命令,特别是在别人写的脚本里面也经常会遇到,但是却很容易与管道搞混淆,本篇会详细讲解到底什么是xargs命令,为什么要用xargs命令以 ...

  6. perventDefault, stopPropagation, stopImmediatePropagation 三者的区别

    event有三种特别容易混淆的方法, 用来阻止默认事件的发生 1.  e.preventDefault(); 2. e.stopPropagation(); 3. e.stopImmediatePro ...

  7. 短小而精悍的JsvaScript函数

    1. 回到顶部, 使用浏览器的刷新频率 requestAnimationFrame 来实现的 const scrollToTop = () => { const c = document.doc ...

  8. python的requests快速上手、高级用法和身份认证

    https://blog.csdn.net/qq_25134989/article/details/78800209 快速上手 迫不及待了吗?本页内容为如何入门 Requests 提供了很好的指引.其 ...

  9. virtualBox 虚拟机下nginx设置不缓存静态文件不起作用解决办法

    最近开发的时候,调整js时会一直使用缓存文件,无法显示改动!nginx配置静态文件add_header Cache-Control no-cache;也不起作用,很苦恼! nginx配置代码:even ...

  10. Iris花逻辑回归与实现

    Iris花的分类是经典的逻辑回归的代表:但是其代码中包含了大量的python库的核心处理模式,这篇文章就是剖析python代码的文章. #取用下标为2,3的两个feture,分别是花的宽度和长度: # ...