Remmarguts' Date
Time Limit: 4000MS   Memory Limit: 65536K
Total Submissions: 29625   Accepted: 8034

Description

"Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks' head, he told them a story.

"Prince Remmarguts lives in his kingdom UDF – United Delta of Freedom. One day their neighboring country sent them Princess Uyuw on a diplomatic mission."

"Erenow, the princess sent Remmarguts a letter, informing him that she would come to the hall and hold commercial talks with UDF if and only if the prince go and meet her via the K-th shortest path. (in fact, Uyuw does not want to come at all)"

Being interested in the trade development and such a lovely girl, Prince Remmarguts really became enamored. He needs you - the prime minister's help!

DETAILS: UDF's capital consists of N stations. The hall is numbered S, while the station numbered T denotes prince' current place. M muddy directed sideways connect some of the stations. Remmarguts' path to welcome the princess might include the same station twice or more than twice, even it is the station with number S or T. Different paths with same length will be considered disparate.

Input

The first line contains two integer numbers N and M (1 <= N <= 1000, 0 <= M <= 100000). Stations are numbered from 1 to N. Each of the following M lines contains three integer numbers A, B and T (1 <= A, B <= N, 1 <= T <= 100). It shows that there is a directed sideway from A-th station to B-th station with time T.

The last line consists of three integer numbers S, T and K (1 <= S, T <= N, 1 <= K <= 1000).

Output

A single line consisting of a single integer number: the length (time required) to welcome Princess Uyuw using the K-th shortest path. If K-th shortest path does not exist, you should output "-1" (without quotes) instead.

Sample Input

2 2
1 2 5
2 1 4
1 2 2

Sample Output

14

Source

POJ Monthly,Zeyuan Zhu
 
题意:求s到t的第K短路

/*
*算法思想:
*单源点最短路径+高级搜索A*;
*A*算法结合了启发式方法和形式化方法;
*启发式方法通过充分利用图给出的信息来动态地做出决定而使搜索次数大大降低;
*形式化方法不利用图给出的信息,而仅通过数学的形式分析;
*
*算法通过一个估价函数f(h)来估计图中的当前点p到终点的距离,并由此决定它的搜索方向;
*当这条路径失败时,它会尝试其他路径;
*对于A*,估价函数=当前值+当前位置到终点的距离,即f(p)=g(p)+h(p),每次扩展估价函数值最小的一个;
*
*对于K短路算法来说,g(p)为当前从s到p所走的路径的长度;h(p)为点p到t的最短路的长度;
*f(p)的意义为从s按照当前路径走到p后再走到终点t一共至少要走多远;
*
*为了加速计算,h(p)需要在A*搜索之前进行预处理,只要将原图的所有边反向,再从终点t做一次单源点最短路径就能得到每个点的h(p)了;
*
*算法步骤:
*(1)将有向图转置即所有边反向,以原终点t为源点,求解t到所有点的最短距离;
*(2)新建一个优先队列,将源点s加入到队列中;
*(3)从优先级队列中弹出f(p)最小的点p,如果点p就是t,则计算t出队的次数;
*如果当前为t的第k次出队,则当前路径的长度就是s到t的第k短路的长度,算法结束;
*否则遍历与p相连的所有的边,将扩展出的到p的邻接点信息加入到优先级队列;
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<ll,int> P;
const int maxn=2e5+,maxm=2e5+,inf=0x3f3f3f3f,mod=1e9+;
const ll INF=1e17+;
struct edge
{
int from,to;
ll w;
};
vector<edge>G[maxn],T[maxn];
priority_queue<P,vector<P>,greater<P> >q;
ll dist[maxn];
void addedge(int u,int v,ll w)
{
G[u].push_back((edge)
{
u,v,w
});
T[v].push_back((edge)
{
v,u,w
});
}
void dij(int s)
{
dist[s]=0LL;
q.push(P(dist[s],s));
while(!q.empty())
{
P p=q.top();
q.pop();
int u=p.second;
for(int i=; i<T[u].size(); i++)
{
edge e=T[u][i];
if(dist[e.to]>dist[u]+e.w)
{
dist[e.to]=dist[u]+e.w;
q.push(P(dist[e.to],e.to));
}
}
}
}
struct node
{
int to;
///g(p)为当前从s到p所走的路径的长度;dist[p]为点p到t的最短路的长度;
ll g,f;///f=g+dist,f(p)的意义为从s按照当前路径走到p后再走到终点t一共至少要走多远;
bool operator<(const node &x ) const
{
if(x.f==f) return x.g<g;
return x.f<f;
}
};
ll A_star(int s,int t,int k)
{
if(dist[s]==INF) return -;
priority_queue<node>Q;
int cnt=;
if(s==t) k++;
ll g=0LL;
ll f=g+dist[s];
Q.push((node)
{
s, g, f
});
while(!Q.empty())
{
node x=Q.top();
Q.pop();
int u=x.to;
if(u==t) cnt++;
if(cnt==k) return x.g;
for(int i=; i<G[u].size(); i++)
{
edge e=G[u][i];
ll g=x.g+e.w;
ll f=g+dist[e.to];
Q.push((node)
{
e.to, g, f
});
}
}
return -;
}
void init(int n)
{
for(int i=; i<=n+; i++) G[i].clear(),T[i].clear();
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=; i<=m; i++)
{
int u,v;
ll w;
scanf("%d%d%lld",&u,&v,&w);
addedge(u,v,w);
}
int s,t,k;
scanf("%d%d%d",&s,&t,&k);
for(int i=; i<=n; i++) dist[i]=INF;
dij(t);
printf("%lld\n",A_star(s,t,k));
init(n);
return ;
}

第k短路

POJ 2449Remmarguts' Date 第K短路的更多相关文章

  1. POJ 2449Remmarguts' Date K短路模板 SPFA+A*

    K短路模板,A*+SPFA求K短路.A*中h的求法为在反图中做SPFA,求出到T点的最短路,极为估价函数h(这里不再是估价,而是准确值),然后跑A*,从S点开始(此时为最短路),然后把与S点能达到的点 ...

  2. poj 2449 Remmarguts' Date (k短路模板)

    Remmarguts' Date http://poj.org/problem?id=2449 Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  3. 【POJ】2449 Remmarguts' Date(k短路)

    http://poj.org/problem?id=2449 不会.. 百度学习.. 恩. k短路不难理解的. 结合了a_star的思想.每动一次进行一次估价,然后找最小的(此时的最短路)然后累计到k ...

  4. poj 2449 Remmarguts' Date 第k短路 (最短路变形)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 33606   Accepted: 9116 ...

  5. POJ 2449 - Remmarguts' Date - [第k短路模板题][优先队列BFS]

    题目链接:http://poj.org/problem?id=2449 Time Limit: 4000MS Memory Limit: 65536K Description "Good m ...

  6. poj 2449 Remmarguts' Date(K短路,A*算法)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013081425/article/details/26729375 http://poj.org/ ...

  7. POJ 2449 Remmarguts' Date ( 第 k 短路 && A*算法 )

    题意 : 给出一个有向图.求起点 s 到终点 t 的第 k 短路.不存在则输出 -1 #include<stdio.h> #include<string.h> #include ...

  8. POJ——2449Remmarguts' Date(A*+SPFA)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 26504   Accepted: 7203 ...

  9. POJ 2449 求第K短路

    第一道第K短路的题目 QAQ 拿裸的DIJKSTRA + 不断扩展的A* 给2000MS过了 题意:大意是 有N个station 要求从s点到t点 的第k短路 (不过我看题意说的好像是从t到s 可能是 ...

随机推荐

  1. struts2漏洞信息

    渗透篇01-struts2漏洞利用  https://blog.csdn.net/qq_38055050/article/details/79841604 Struts2著名RCE漏洞引发的十年之思  ...

  2. linux mysqlERROR 1045 (28000): linux忘记数据库密码

    已验证没问题 #1.停止mysql数据库(确定能停止掉,不然第二部有问题) /etc/init.d/mysqld stop   #2.执行如下命令 mysqld_safe --user=mysql - ...

  3. windows下配置pymysql

    可以直接pip安装 pip install pyMysql

  4. ORACLE 把不是SYS用户下的所有JOB删除掉

    BEGIN  FOR job_id in(select job,log_user,priv_user,schema_user from dba_jobs)   LOOP    IF(job_id.lo ...

  5. python return 及lambda函数

    return有两个作用: 1.用来返回函数的运行结果,或者调用另外一个函数.比如max()函数 >>> def fun(a,b): #返回函数结果. return max(a,b) ...

  6. JAVA中字符串的startWith什么意思

    判断字符串是否以某个子字符串开头. 比如字符串“abcdefg”.startWith("abc") 判断结果是true,因为它是以 abc 开头的.

  7. 四 sys模块

    1 sys.argv 命令行参数List,第一个元素是程序本身路径 2 sys.exit(n) 退出程序,正常退出时exit(0) 3 sys.version 获取Python解释程序的版本信息 4 ...

  8. 斐波那契数列(python)

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 # -*- coding:utf-8 -*- class Solut ...

  9. pta7-19打印学生选课清单(模拟)

    题目链接:https://pintia.cn/problem-sets/1101307589335527424/problems/1101314114875633664 题意:输入n个学生,k門课程, ...

  10. avcodec_decode_video2少帧问题

    使用libav转码视频时发现一个问题:使用下面这段代码解码视频时,解码中会不时丢掉几帧. ){ ret = avcodec_decode_video2(video_dec_ctx, vframe, & ...