Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

If the total number of different values is less than K,just ouput 0.

 
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).
 
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
 
Sample Output
12
2
0
 
思路:
对于求最优解的情况,我们对每一种状态只保存了该状态下的最优解,忽略了其他解,进而实现状态之间的转移,而对于求第K优解的情况呢?其实只需要保存每一种状态下的前K优解,从这K个状态进行状态间的转移,同时去重,保存当前状态的K优解即可。(感觉时间复杂度还是挺高的)
 
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <map>
#include <algorithm>
using namespace std; const int N = ;
const int INF = 0x3fffffff;
const long long MOD = ;
typedef long long LL;
#define met(a,b) (memset(a,b,sizeof(a))) int dp[N][];
int a[N], b[N], c[N];
///dp[j][k] 代表容量为 j 的背包的第 k+1 优解 int cmp(int a, int b)
{
return a > b;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int i, j, k, n, v; scanf("%d%d%d", &n, &v, &k); met(a, );
met(b, );
met(dp, ); for(i=; i<=n; i++)
scanf("%d", &a[i]);
for(i=; i<=n; i++)
scanf("%d", &b[i]); for(i=; i<=n; i++)
{
for(j=v; j>=b[i]; j--)
{
int w = ;
for(int z=; z<k; z++) ///每次只需考虑前 k 优解的状态转换即可
{
c[w++] = dp[j][z];
c[w++] = dp[j-b[i]][z]+a[i];
} sort(c, c+w, cmp);
w = unique(c, c+w) - c;
for(int t=; t<k && t<w; t++) ///t的范围, 既不能大于 k,也不能大于 w
dp[j][t] = c[t];
}
} printf("%d\n", dp[v][k-]); }
return ;
}

(01背包 第k优解) Bone Collector II(hdu 2639)的更多相关文章

  1. 01背包之求第K优解——Bone Collector II

    http://acm.hdu.edu.cn/showproblem.php?pid=2639 题目大意是,往背包里赛骨头,求第K优解,在普通01背包的基础上,增加一维空间,那么F[i,v,k]可以理解 ...

  2. HDU 2639 (01背包第k优解)

    /* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...

  3. HDU 3639 Bone Collector II(01背包第K优解)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. 杭电 2639 Bone Collector II【01背包第k优解】

    解题思路:对于01背包的状态转移方程式f[v]=max(f[v],f[v-c[i]+w[i]]);其实01背包记录了每一个装法的背包值,但是在01背包中我们通常求的是最优解, 即为取的是f[v],f[ ...

  5. Bone Collector II HDU - 2639 01背包第k最大值

    题意: 01背包,找出第k最优解 题解: 对于01背包最优解我们肯定都很熟悉 第k最优解的话也就是在dp方程上加一个维度来存它的第k最优解(dp[i][j]代表,体积为i能获得的第j最大价值) 对于每 ...

  6. 01背包-第k优解

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

  7. hdu2639 01背包第K优解

    #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #i ...

  8. HDU2639Bone Collector II[01背包第k优值]

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  9. HDU 2639 背包第k优解

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. vue slot插槽的使用方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. overflow 在float浮动标签里的作用

    overflow可以使浮动元素回归文档流,但是浮动元素却仍然具有浮动的属性 <!DOCTYPE html> <html lang="en"> <hea ...

  3. JAVA 8.20 游戏:四子连(Java&C++)

    (游戏:四子连 )四子连是一个两个人玩的棋盘游戏,在游戏中,玩家轮流将有颜色的棋子放在一个六行七列的垂直悬挂的网格中:         这个游戏的目的是在对手实现一行.一列或者一条对角线上有四个相同颜 ...

  4. GCC编译的几个步骤

    参考资料: https://blog.csdn.net/czg13548930186/article/details/78331692 一个C/C++文件要经过预处理(preprocessing).编 ...

  5. UI设计:C4D作品案例分享

    中文名4D电影,外文名CINEMA 4D,研发公司为德国Maxon Computer,特点为极高的运算速度和强大的渲染插件,使用在电影<毁灭战士>.<阿凡达>中,获得贸易展中最 ...

  6. Getting svn to ignore files and directories

    August 27, 2013Software Developmentresources, subversion, svn, tutorial, version control Who knew it ...

  7. ApplicationContext(三)BeanFactory 初始化

    ApplicationContext(三)BeanFactory 初始化 上节我们提到容器初始化的第一步首先进行了属性的检验,下面就要开始第二步:进行 beanFactory 的初始化工作了. App ...

  8. 【搜索】棋盘问题(DFS)

    Description 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子 ...

  9. Windows 8.1 app 界面设计

    大纲: Windows 应用商店应用 UI 详细信息 http://msdn.microsoft.com/zh-cn/library/windows/apps/xaml/dn263191.aspx 快 ...

  10. Viewer.js 是一款强大的 jQuery 图像浏览插件。

    https://blog.csdn.net/qq_29132907/article/details/80136023 一.效果图  二.代码<!DOCTYPE html><html ...