我们前文说过,有关最短路径除了Floyed算法之外,还有许多更加好的方法。这里讲一下有关 Bellman-Ford和SPFA的知识

Bellman-Ford:复杂度O(VE)

有关Bellman-Ford,也不是特别的重要,可以说算是对于SPFA的一个铺垫(有更好的方法还用什么laji更慢的算法呢?)【这里有一个迭代搞的我很懵,这里暂且看做是有关松弛的操作】

Bellman-Ford算法是求含负权图的单源最短路径的一种算法,效率较低,代码难度较小。其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在n-1次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。

从这里大家可以看出Bellman-Ford和SPFA在一定程度上的弊端:图中有负环则无法出答案。但可以对其进行一步判断

我们应当明确一点:Bellman-Ford算法是用来解决单源最短路问题的。(恩,没毛病)

这里需要进行多次的松弛操作,每一次成功的松弛操作,都意味着我们发现了一条新的最短路。所以这个方法显然是对的,但是显然laji够慢

(下面这一段是黈的,毕竟本蒟蒻不会迭代QAQ)

注意:1.只有上一次迭代中松弛过的点才有可能参与下一次迭代的松弛操作。

   2.迭代的实际意义:每次迭代k中,我们找到了经历了k条边的最短路。

   3.没有点能够被“松弛”时,迭代结束  

//由于我不太写Bellman-Ford的代码,这里用的是百度百科的,害怕误人子弟qwq
#include<iostream>
#include<cstdio>
using namespace std; #define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点 typedef struct Edge //边
{
int u, v;
int cost;
}Edge; Edge edge[N];
int dis[N], pre[N]; bool Bellman_Ford()
{
for(int i = ; i <= nodenum; ++i) //初始化
dis[i] = (i == original ? : MAX);
for(int i = ; i <= nodenum - ; ++i)
for(int j = ; j <= edgenum; ++j)
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)
{
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
pre[edge[j].v] = edge[j].u;
}
bool flag = ; //判断是否含有负权回路
for(int i = ; i <= edgenum; ++i)
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
{
flag = ;
break;
}
return flag;
} void print_path(int root) //打印最短路的路径(反向)
{
while(root != pre[root]) //前驱
{
printf("%d-->", root);
root = pre[root];
}
if(root == pre[root])
printf("%d\n", root);
} int main()
{
scanf("%d%d%d", &nodenum, &edgenum, &original);
pre[original] = original;
for(int i = ; i <= edgenum; ++i)
{
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);
}
if(Bellman_Ford())
for(int i = ; i <= nodenum; ++i) //每个点最短路
{
printf("%d\n", dis[i]);
printf("Path:");
print_path(i);
}
else
printf("have negative circle\n");
return ;
}

SPFA:复杂度O(MN)【这里的M在一般不毒瘤的题里是2,N就是边数】

SPFA 算法是 Bellman-Ford算法的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环。SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE)。

相对于Dijkstra算法来说有相似之处,但又不同(貌似Dijkstra更稳一些qwq)

算法大致流程是用一个队列来进行维护。 初始时将源加入队列。 每次从队列中取出一个元素,并对所有与他相邻的点进行松弛,若某个相邻的点松弛成功,则将其入队。 直到队列为空时算法结束。

这样就可以大幅度的减少复杂度(毒瘤题除外)

因为本蒟蒻初学,这里发一个简单的代码

可以过洛谷P3371 【模板】单源最短路径(弱化版)

题目描述

如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。

输入输出格式

输入格式:

第一行包含三个整数N、M、S,分别表示点的个数、有向边的个数、出发点的编号。

接下来M行每行包含三个整数Fi、Gi、Wi,分别表示第i条有向边的出发点、目标点和长度。

输出格式:

一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为2147483647)

输入输出样例

输入样例#1:
复制

4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
输出样例#1: 复制

0 2 4 3

说明

时空限制:1000ms,128M

数据规模:

对于20%的数据:N<=5,M<=15;

对于40%的数据:N<=100,M<=10000;

对于70%的数据:N<=1000,M<=100000;

对于100%的数据:N<=10000,M<=500000。保证数据随机。

对于真正 100% 的数据,请移步P4779。请注意,该题与本题数据范围略有不同。

样例说明:

图片1到3和1到4的文字位置调换

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue> using namespace std; const int inf=; int n,m,s;
int dis[],vis[],head[],num_edge; struct Edge{
int next,to,dis;
}edge[]; queue <int> q; void addedge(int from,int to,int dis)
{
num_edge++;
edge[num_edge].next=head[from];
edge[num_edge].to=to;
edge[num_edge].dis=dis;
head[from]=num_edge;
} void spfa()
{
for(int i=;i<=n;++i)
{
dis[i]=inf;
vis[i]=;
}
dis[s]=;
vis[s]=;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=;
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].dis)
{
dis[v]=dis[u]+edge[i].dis;
if(!vis[v])
{
q.push(v);
vis[v]=;
}
}
}
}
} int main()
{
scanf("%d %d %d",&n,&m,&s);
for(int i=;i<=m;++i)
{
int u,v,d;
scanf("%d %d %d",&u,&v,&d);
addedge(u,v,d);
}
spfa();
for(int i=;i<=n;++i)
{
if(i==s) printf("0 ");
else printf("%d ",dis[i]);
}
return ;
}

Bellman-Ford&&SPFA的更多相关文章

  1. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  2. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  3. 蓝桥杯 algo_5 最短路 (bellman,SPFA)

    问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个 ...

  4. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  5. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  6. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  7. 最短路径:Dijkstra,Bellman,SPFA,Floyd该算法的实施

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzQ4NzA1MQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  8. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  9. POJ 2240 Arbitrage (Bellman Ford判正环)

    Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:27167   Accepted: 11440 Descri ...

  10. poj1860 兑换货币(bellman ford判断正环)

    传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...

随机推荐

  1. elementUi的时间选择器在IE浏览器的赋值问题--前端

    项目技术:vue+elementUi,组件化 出现的问题:在IE浏览器(IE10+),唤醒组件加载赋值,表单中el-input等框赋值正确,el-date-picker选择器没有显示所附的值(或显示p ...

  2. Web前端新学

    本人大学时学的是网络工程,那时候只是大概学了一点HTML和CSS.毕业后没有找IT方面的工作,所以对专业知识忘得差不多了.然由于生活现状,终是决心重新好好学习IT,刚入学的一周学习了C#语言的一些知识 ...

  3. CSS3 弹性盒子

    理解: CSS3 弹性盒( Flexible Box 或 flexbox),是一种当页面需要适应不同的屏幕大小以及设备类型时确保元素拥有恰当的行为的布局方式. 设置弹性盒子: 弹性盒子由弹性容器(Fl ...

  4. Android深入理解Context(一)Context关联类和Application Context创建过程

    前言 Context也就是上下文对象,是Android较为常用的类,但是对于Context,很多人都停留在会用的阶段,这个系列会带大家从源码角度来分析Context,从而更加深入的理解它. 1.Con ...

  5. SQL大全基本语法

    一.基础 1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- ...

  6. pipe size设置

    我所用的软件架构,使用pipe来实现线程之间的大量数据的传输.在实际操作中,pipe中传输的是数据的指针,而不是数据本身.  但是在调试过程中,我发现,如果我尝试往pipe里面write10000个指 ...

  7. SpringBoot Mybatis 使用LocalDateTime

    mybatis-spring-boot-starter 2.0.1 会报错,不知道如何解决(建议先不用) mybatis-spring-boot-starter 2.0.1 - 1.3.2 版本不会报 ...

  8. Gitlab管理网页老是500错误?增加物理内存,增加cpu吧

    上一篇 CentOS 7 系统下 GitLab 搭建 搭建时,是用的是1G内存, 访问gitlab管理网页非常慢,常常出现 500错误 查询后发现: Gitlab的运行对CPU是有要求的:2核心 支持 ...

  9. Linux新手随手笔记1.7

    配置网卡(本地电脑) Vment1   仅主机模式 Vment8   nat模式 物理机 : 192.16810.1  /255.255.255.0 服务器 : 192.168.10.10 /255. ...

  10. Ubuntu下搭建spark2.4环境(单机版)

    说明:单机版的Spark的机器上只需要安装JDK即可,其他诸如Hadoop.Zookeeper(甚至是scala)之类的东西可以一概不安装.集群版搭建:Spark2.2集群部署和配置 一.安装JDK1 ...