齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律。

它可以表述为:

自然语言语料库里,一个单词出现的频率与它在频率表里的排名成反比

所以,频率最高的单词出现的频率大约是出现频率第二位的单词的2倍,

而出现频率第二位的单词则是出现频率第四位的单词的2倍。

这个定律被作为任何与幂定律概率分布有关的事物的参考。

目录

例子

最简单的齐夫定律的例子是“1/f function”。给出一组齐夫分布的频率,按照从最常见到非常见排列,第二常见的频率是最常见频率的出现次数的½,第三常见的频率是最常见的频率的1/3,第n常见的频率是最常见频率出现次数的1/n。然而,这并不精确,因为所有的项必须出现一个整数次数,一个单词不可能出现2.5次。

Brown语料库中,“the”、“of”、“and”是出现频率最前的三个单词,其出现的频数分别为69971次、36411次、28852次,大约占整个语料库100万个单词中的7%、3.6%、2.9%,其比例约为6:3:2。大约占整个语料库的7%(100万单词中出现69971次)。满足齐夫定律中的描述。仅仅前135个字汇就占了Brown语料库的一半。

齐夫定律是一个实验定律,而非理论定律,可以在很多非语言学排名中被观察到,例如不同国家中城市的数量、公司的规模、收入排名等。但它的起因是一个争论的焦点。齐夫定律很容易用点阵图观察,坐标分别为排名和频率的自然对数(log)。比如,“the”用上述表述可以描述为x = log(1), y = log(69971)的点。如果所有的点接近一条直线,那么它就遵循齐夫定律。

遵循该定律的现象

  • 单词的出现频率:不仅适用于语料全体,也适用于单独的一篇文章
  • 网页访问频率
  • 城市人口
  • 收入前3%的人的收入
  • 地震震级
  • 固体破碎时的碎片大小

参见

====================================

Zipf Distribution

The Zipf distribution, sometimes referred to as the zeta distribution, is a discrete distribution commonly used in linguistics, insurance, and the modelling of rare events. It has probability density function

 

where is a positive parameter and is the Riemann zeta function, and distribution function

 

where is a generalized harmonic number.

The Zipf distribution is implemented in the Wolfram Language as ZipfDistribution[rho].

The th raw moment is

 

giving the mean and variance as

 
 

The distribution has mean deviation

 

where is a Hurwitz zeta function and is the mean as given above in equation (4).

SEE ALSO: Zipf's Law

 

CITE THIS AS: Weisstein, Eric W. "Zipf Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ZipfDistribution.html

Zipf's Law

In the English language, the probability of encountering the th most common word is given roughly by for up to 1000 or so. The law breaks down for less frequent words, since the harmonic series diverges. Pierce's (1980, p. 87) statement that for is incorrect. Goetz states the law as follows: The frequency of a word is inversely proportional to its statistical rank such that

where is the number of different words.

Theoretical review

Zipf's law is most easily observed by plotting the data on a log-log graph, with the axes being log (rank order) and log (frequency). For example, the word "the" (as described above) would appear at x = log(1), y = log(69971). It is also possible to plot reciprocal rank against frequency or reciprocal frequency or interword interval against rank.[1] The data conform to Zipf's law to the extent that the plot is linear.

Formally, let:

  • N be the number of elements;
  • k be their rank;
  • s be the value of the exponent characterizing the distribution.

Zipf's law then predicts that out of a population of N elements, the frequency of elements of rank k, f(k;s,N), is:

f ( k ; s , N ) = 1 / k s ∑ n = 1 N ( 1 / n s ) {\displaystyle f(k;s,N)={\frac {1/k^{s}}{\sum _{n=1}^{N}(1/n^{s})}}}

齐夫定律, Zipf's law,Zipfian distribution的更多相关文章

  1. Zipf's law

    w https://www.bing.com/knows/search?q=马太效应&mkt=zh-cn&FORM=BKACAI 马太效应(Matthew Effect),指强者愈强. ...

  2. Zipf’s Law

    Let f(w) be the frequency of a word w in free text. Suppose that all the words of a text are ranked ...

  3. 构造定律(constructal law)-构造定律作为第二个时间箭头,将和热力学第二定律一道将宇宙推向无序。

    优化系统结构,使信息和物质流在结构内的流动更畅通. 构造定律(constructal law) 由Adrian Bejan于1995创立的构造定律(constructal law):   For a ...

  4. 墨菲定律-Murphy's Law (转载)

    墨菲定律 “墨菲定律”(Murphy's Law)亦称莫非定律.莫非定理.或摩菲定理,是西方世界常用的俚语. “墨菲定律”:事情往往会向你所想到的不好的方向发展,只要有这个可能性.比如你衣袋里有两把钥 ...

  5. 默菲定律 [Murphy's Law]

    一.关于默菲定律(Murphy's Law)   “墨菲定律”.“帕金森定律”和“彼德原理”并称为二十世纪西方文化三大发现. “墨菲定律”的原话是这样说的:If there are two or mo ...

  6. 里特定律 - Little's Law

    里特定律(Little's Law)源自排队理论,是IT系统性能建模中最广为人知的定律. 里特定律揭示了前置时间(Lead Time).在制品数量(Work In Progress, WIP)和吞吐率 ...

  7. 齐普夫-Zipf定律

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...

  8. Zipf定律

    http://www.360doc.com/content/10/0811/00/84590_45147637.shtml 英美在互联网具有绝对霸权 Zipf定律是美国学者G.K.齐普夫提出的.可以表 ...

  9. TF/IDF(term frequency/inverse document frequency)

    TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相 ...

随机推荐

  1. 让BASH,VIM美美的Powerline

    前言  鉴于BASH及其周边强大的工具以及VIM高效快捷,加上现在我工作重心转移到前端开发上,因此我华丽地转向Linux阵营(当然从最傻瓜式的Ubuntu开始啦!).但BASH和VIM默认样式确实颜值 ...

  2. 自己手写的自动完成js类

    在web开发中,为了提高用户体验,会经常用到输入框的自动完成功能,不仅帮助用户进行快速输入,最重要的是帮助那些“记不全要输入什么”的用户进行选择.这个功能有很多插件已经实现了,为了适应项目的特殊需求, ...

  3. request 对象和 response 对象

    Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的response对象 HttpServletResponse HttpServletR ...

  4. window下使用Redis Cluster部署Redis集群

    日常的项目很多时候都需要用到缓存.redis算是一个比较好的选择.一般情况下做一个主从就可以满足一些比较小的项目需要.在一些并发量比较大的项目可能就需要用到集群了,redis在Windows下做集群可 ...

  5. VNC软件的安装及使用方法说明

    本篇仅为作业... 实验课程:Linux系统 指导老师:刘臣奇 实验机器:联想y410p 实验时间:2016年9月11日 学生学号:140815 姓名:杨文乾 在一台机器安装viewer的同时,在另一 ...

  6. apache中怎么配置网站的默认首页

    配置方法如下:1.首先需要打开Apache的配置文件httpd.conf文件,使用一般的编辑器或者记事本打开均可.2.找到或者搜索到如下字段:<IfModule dir_module> D ...

  7. 大量数据快速导出的解决方案-Kettle

    1.开发背景 在web项目中,经常会需要查询数据导出excel,以前比较常见的就是用poi.使用poi的时候也有两种方式,一种就是直接将集合一次性导出为excel,还有一种是分批次追加的方式适合数据量 ...

  8. [转] 评 WOW技能天赋设计

    本文转至:http://bbs.chinaunix.net/thread-1692302-8-1.html(只作转载, 不代表本站和博主同意文中观点或证实文中信息)再比如,传说中的面向对象本该大显神威 ...

  9. 无脑简单 命令升级git Centos

    yum remove git yum install zlib (系统默认已经装上) yum install zlib-devel ># wget https://github.com/git/ ...

  10. 初识Git

    Git是目前世界上最先进的分布式版本控制系统.在Git诞生之前,我们一直使用的是集中式版本控制系统(如CVS.SVN等),那么两者有什么不同呢?分布式的优势又在哪里呢? 分布式vs集中式 集中式版本控 ...