RocketMQ源码 — 六、 RocketMQ高可用(1)
高可用究竟指的是什么?请参考:关于高可用的系统
RocketMQ做了以下的事情来保证系统的高可用
- 多master部署,防止单点故障
- 消息冗余(主从结构),防止消息丢失
- 故障恢复(本篇暂不讨论)
那么问题来了:
- 怎么支持多broker的写?
- 怎么实现消息冗余?
下面分开说明这两个问题
多master集群
这里强调出master集群,是因为需要多个broker set,而一个broker set只有一个master(见下文的“注意”),所以是master集群
broker有三种角色:ASYNC_MASTER、SYNC_MASTER和SLAVE,这些角色常用的搭配为:
- ASYNC_MASTER、SLAVE:容许丢消息,但是要broker一直可用,master异步传输CommitLog到slave
- SYNC_MASTER、SLAVE:不允许丢消息,master同步传输CommitLog到slave
- ASYNC_MASTER:如果只是想简单部署则使用这种方式
master:负责消息的读写
slave:只负责读消息
SYNC_MASTER与ASYNC_MASTER的区别是sync会等待消息传输到slave才算消息写完成,而async不会同步等待,而是异步复制到slave
RocketMQ的架构图(原图地址)

注意:在RocketMQ里面有一个概念broker set,一个broker set由一个master和多个slave组成,一个broker set内的每个broker的brokerName相同。
在broker集群中每个master相互之间是独立,master之间不会有交互,每个master维护自己的CommitLog、自己的ConsumeQueue,但是每一个master都有可能收到同一个topic下的producer发来的消息
为了支持多master集群,需要解决几个问题:
- namesrv怎么管理broker
- producer发送消息的时候知道发送到哪一个broker(为什么是master)
1. namesrv怎么管理broker
broker启动的时候会向namesrv注册自己的信息
// org.apache.rocketmq.broker.BrokerController#registerBrokerAll
public synchronized void registerBrokerAll(final boolean checkOrderConfig, boolean oneway) {
TopicConfigSerializeWrapper topicConfigWrapper = this.getTopicConfigManager().buildTopicConfigSerializeWrapper();
// 省略中间代码...
RegisterBrokerResult registerBrokerResult = this.brokerOuterAPI.registerBrokerAll(
this.brokerConfig.getBrokerClusterName(),
this.getBrokerAddr(),
this.brokerConfig.getBrokerName(),
this.brokerConfig.getBrokerId(),
this.getHAServerAddr(),
topicConfigWrapper,
this.filterServerManager.buildNewFilterServerList(),
oneway,
this.brokerConfig.getRegisterBrokerTimeoutMills());
// 省略中间代码...
}
信息中包括:
clusterName:broker 集群的名字,如:DefaultCluster
brokerAddr:broker的ip:port,如:192.168.0.102:10911
brokerName:注意这个字段,上面介绍过了,一个broker set中的brokerName是相同的,需要在部署的时候配置
brokerId:用来唯一标示一个broker set中的broker,master是0(org.apache.rocketmq.common.MixAll#MASTER_ID),slave是正整数
haServerAddr:haServer的ip:port,如:192.168.0.102:10912
topicConfigWrapper:是比较复杂的数据结构,主要包含了broker上所有的topic信息,如:
{
"dataVersion": {
"counter": 2,
"timestamp": 1514252649572
},
"topicConfigTable": {
"TopicTest": {
"order": false,
"perm": 6,
"readQueueNums": 4,
"topicFilterType": "SINGLE_TAG",
"topicName": "TopicTest",
"topicSysFlag": 0,
"writeQueueNums": 4
},
"%RETRY%please_rename_unique_group_name_4": {
"order": false,
"perm": 6,
"readQueueNums": 1,
"topicFilterType": "SINGLE_TAG",
"topicName": "%RETRY%please_rename_unique_group_name_4",
"topicSysFlag": 0,
"writeQueueNums": 1
}
}
}
上面包含了两个topic:TopicTest和%RETRY%please_rename_unique_group_name_4,相关字段的含义:
order:是否是顺序消息
perm:表明该topic的权限,可读(4)、可写(2)、可继承(1),通过位运算组合
readQueueNums:决定了consume消费的MessageQueue共有几个
writeQueueNums:决定了producer发送消息的MessageQueue共有几个
这些信息发送给namesrv之后,namesrv转化为自己的数据结构,namesrv处理broker注册的方法是:
// org.apache.rocketmq.namesrv.routeinfo.RouteInfoManager#registerBroker
public RegisterBrokerResult registerBroker(
final String clusterName,
final String brokerAddr,
final String brokerName,
final long brokerId,
final String haServerAddr,
final TopicConfigSerializeWrapper topicConfigWrapper,
final List<String> filterServerList,
final Channel channel) {
RegisterBrokerResult result = new RegisterBrokerResult();
try {
try {
// 省略中间代码...
// 这里会判断只有master才会创建QueueData,因为只有master才包含了读写队列的信息
// slave没有自己独立的读写队列信息(salve不会创建自己的queue信息),只是和master的的读写队列信息一致
if (null != topicConfigWrapper
&& MixAll.MASTER_ID == brokerId) {
if (this.isBrokerTopicConfigChanged(brokerAddr, topicConfigWrapper.getDataVersion())
|| registerFirst) {
ConcurrentMap<String, TopicConfig> tcTable =
topicConfigWrapper.getTopicConfigTable();
if (tcTable != null) {
for (Map.Entry<String, TopicConfig> entry : tcTable.entrySet()) {
// 这个方法创建了QueueData,QueueData包含broker set下的读写队列的信息
this.createAndUpdateQueueData(brokerName, entry.getValue());
}
}
}
}
// 省略中间代码...
} catch (Exception e) {
log.error("registerBroker Exception", e);
}
return result;
}
上面涉及到的namesrv的几个重要数据结构
// 每个cluster下的broker set信息,一个brokerName对应的broker set
private final HashMap<String/* clusterName */, Set<String/* brokerName */>> clusterAddrTable;
// 每个broker set中的broker信息(set中有哪些broker,每个broker的brokerId和brokerAddr)
private final HashMap<String/* brokerName */, BrokerData> brokerAddrTable;
// 每个broker的存活情况
private final HashMap<String/* brokerAddr */, BrokerLiveInfo> brokerLiveTable;
// 每个topic下的queue信息,包括每个broker set中读写队列的个数,consumer消费消息和producer发送消息的路由信息都从这个数据结构中获取
private final HashMap<String/* topic */, List<QueueData>> topicQueueTable;
所以,namesrv通过将broker注册来的信息构造成自己的数据结构:
- 每个cluster有哪些broker set
- 每个broker set包括哪些broker,brokerId和broker的ip:port
- 每个broker的存活情况,根据每次broker上报来的信息,清除可能下线的broker
- 每个topic的消息队列信息,几个读队列,几个写队列
namesrv汇总所有的broker的这些信息,然后供consumer和producer拉取
2. producer发送消息的时候知道发送到哪一个master
之前我们知道producer发送消息的时候发往哪一个broker是由MessageQueue决定的,所以我们先要搞清楚producer发送消息时候的MessageQueue怎么来的。producer维护了一个topicPublishInfoTable,里面包含了每个topic对应的MessageQueue,所以问题就变成了topicPublishInfoTable怎么构造的。
producer发送消息之前都会获取topic对应的队列信息,当topicPublishInfoTable中没有的时候会从namesrv获取,获取的方法如下:
// org.apache.rocketmq.client.impl.factory.MQClientInstance#updateTopicRouteInfoFromNameServer(java.lang.String, boolean, org.apache.rocketmq.client.producer.DefaultMQProducer)
public boolean updateTopicRouteInfoFromNameServer(final String topic, boolean isDefault,
DefaultMQProducer defaultMQProducer) {
try {
if (this.lockNamesrv.tryLock(LOCK_TIMEOUT_MILLIS, TimeUnit.MILLISECONDS)) {
try {
TopicRouteData topicRouteData;
if (isDefault && defaultMQProducer != null) {
// 省略中间代码...
} else {
// 从manesrv获取topic的路由信息,namesrv从topicQueueTable获取到该topic对应的所有的QueueData
// 然后将每个brokerName下的BrokerData返回
topicRouteData = this.mQClientAPIImpl.getTopicRouteInfoFromNameServer(topic, 1000 * 3);
}
// 省略中间代码...
for (BrokerData bd : topicRouteData.getBrokerDatas()) {
// 每个broker set下所有的broker地址(ip:port)
this.brokerAddrTable.put(bd.getBrokerName(), bd.getBrokerAddrs());
}
// Update Pub info
{
// 将从namesrv获取到的路由信息转换为TopicPublishInfo
// 期间会将没有master的broker set的queue信息去除
TopicPublishInfo publishInfo = topicRouteData2TopicPublishInfo(topic, topicRouteData);
// 省略中间代码...
} catch (InterruptedException e) {
log.warn("updateTopicRouteInfoFromNameServer Exception", e);
}
return false;
}
到此,producer也知道自己可以向哪些MessageQueue发送消息了,接下来就是producer的负载均衡算法选出其中一个MessageQueue发送消息(org.apache.rocketmq.client.impl.producer.DefaultMQProducerImpl#selectOneMessageQueue,这个暂时不详表),MessageQueue包含的信息有topic、brokerName、queueId,但是producer发送的时候得知道broker的ip:port信息,而且一个brokerName对应的是一个broker set,并不能确定具体的broker,所以接下来应该找到具体的broker
// org.apache.rocketmq.client.impl.factory.MQClientInstance#findBrokerAddressInPublish
public String findBrokerAddressInPublish(final String brokerName) {
// 上面updateTopicRouteInfoFromNameServer方法将broker set下的broker地址信息保存到brokerAddrTable
// 再次重申:一个broker set下的broker的brokerName相同
HashMap<Long/* brokerId */, String/* address */> map = this.brokerAddrTable.get(brokerName);
if (map != null && !map.isEmpty()) {
// 没有花样,就是直接返回brokerId时MixAll.MASTER_ID的broker的ip:port信息
// 前面说过master的brokerId就是MixAll.MASTER_ID,所以获取到的broker是broker set中的master
return map.get(MixAll.MASTER_ID);
}
return null;
}
终于真相大白,producer只会向是master的broker发送消息,也就是一个broker set中brokerId是0的broker。
producer只能发送消息到master,而不能发送到slave,这也说明了master负责读“写”,而slave只负责读(当然,这里只说明了“写”的部分,关于master 和slave的“读”下一篇介绍)。
总结
本篇介绍了RocketMQ究竟做了什么来实现作为一个消息队列中间件的高可用,由于篇幅会偏长,所以分为两篇文章来说明,下一篇说明文中遗留下的另一个问题——RocketMQ源码 — 六、 RocketMQ高可用(2)
参考:
RocketMQ源码 — 三、 Producer消息发送过程
RocketMQ源码 — 六、 RocketMQ高可用(1)的更多相关文章
- Linux源码安装RabbitMQ高可用集群
1.环境说明 linux版本:CentOS Linux release 7.9.2009 erlang版本:erlang-24.0 rabbitmq版本:rabbitmq_server-3.9.13 ...
- RocketMQ源码详解 | Broker篇 · 其五:高可用之主从架构
概述 对于一个消息中间件来讲,高可用功能是极其重要的,RocketMQ 当然也具有其对应的高可用方案. 在 RocketMQ 中,有主从架构和 Dledger 两种高可用方案: 第一种通过主 Brok ...
- 读完 RocketMQ 源码,我学会了如何优雅的创建线程
RocketMQ 是一款开源的分布式消息系统,基于高可用分布式集群技术,提供低延时.高可靠的消息发布与订阅服务. 这篇文章,笔者整理了 RocketMQ 源码中创建线程的几点技巧,希望大家读完之后,能 ...
- 源码分析 RocketMQ DLedger(多副本) 之日志复制(传播)
目录 1.DLedgerEntryPusher 1.1 核心类图 1.2 构造方法 1.3 startup 2.EntryDispatcher 详解 2.1 核心类图 2.2 Push 请求类型 2. ...
- 【RocketMQ源码学习】- 4. Client 事务消息源码解析
介绍 > 基于4.5.2版本的源码 1. RocketMQ是从4.3.0版本开始支持事务消息的. 2. RocketMQ的消息队列能够保证生产端,执行数据和发送MQ消息事务一致性,而消费端的事务 ...
- RocketMQ 源码分析 —— Message 发送与接收
1.概述 Producer 发送消息.主要是同步发送消息源码,涉及到 异步/Oneway发送消息,事务消息会跳过. Broker 接收消息.(存储消息在<RocketMQ 源码分析 —— Mes ...
- 【RocketMQ源码分析】深入消息存储(1)
最近在学习RocketMQ相关的东西,在学习之余沉淀几篇笔记. RocketMQ有很多值得关注的设计点,消息发送.消息消费.路由中心NameServer.消息过滤.消息存储.主从同步.事务消息等等. ...
- 【RocketMQ源码分析】深入消息存储(3)
前文回顾 CommitLog篇 --[RocketMQ源码分析]深入消息存储(1) ConsumeQueue篇 --[RocketMQ源码分析]深入消息存储(2) 前面两篇已经说过了消息如何存储到Co ...
- RocketMQ源码详解 | Producer篇 · 其二:消息组成、发送链路
概述 在上一节 RocketMQ源码详解 | Producer篇 · 其一:Start,然后 Send 一条消息 中,我们了解了 Producer 在发送消息的流程.这次我们再来具体下看消息的构成与其 ...
随机推荐
- Linux系统编程----孤儿进程
什么是孤儿进程? 孤儿进程, 指在父进程退出后,而子进程还在运行,这个子进程就成了孤儿进程,这时由init进程(pid=1)接管 来看看例子: #include <stdio.h> #i ...
- [django]添加自定义template filter标签
看文档templatetag 直接放在app下的templatetag 文件夹下就好,这里想放到一个公共的目录下,然后写下简单的自定义tag的模板. django1.6 创建 在项目目录下建立如下的文 ...
- 06 获取Activity的栈管理器
代码 <span style="font-size:18px;">package com.fmy.day8_29task.util; import java.util. ...
- Ruby开发入门
开发环境搭建 首先安装Ruby SDK,我安装的版本是2.0.之后安装IDE,这里用的是Jetbrain的RubyMine 5.4.3,注意是否支持对应版本的Ruby SDK. 一段神奇的注册码... ...
- Android数据库框架——GreenDao轻量级的对象关系映射框架,永久告别sqlite
Android数据库框架--GreenDao轻量级的对象关系映射框架,永久告别sqlite 前不久,我在写了ORMLite这个框架的博文 Android数据库框架--ORMLite轻量级的对象关系映射 ...
- HTTP 消息结构
HTTP 消息结构 HTTP是基于客户端/服务端(C/S)的架构模型,通过一个可靠的链接来交换信息,是一个无状态的请求/响应协议. 一个HTTP"客户端"是一个应用程序(Web浏览 ...
- FFmpeg在ubuntu下安装及使用
FFmpeg是一套可以用来记录.转换数字音频.视频,并能将其转化为流的开源计算机程序.采用LGPL或GPL许可证.它提供了录制.转换以及流化音视频的完整解决方案.它包含了非常先进的音频/视频编解码库l ...
- 【shell脚本练习】批量添加用户和设置密码
题目 添加9个用户,user101-user109:密码同用户名: 思路 for循环来添加就好了,用户名和密码都可以拼字符串来完成 user10+数字 要判断是否能添加成功,注意非交互模式下修改用户密 ...
- android官方技术文档翻译——aar 格式
本文译自androd官方技术文档<AAR Format>,原文地址:http://tools.android.com/tech-docs/new-build-system/aar-form ...
- Linux nohup 命令
Linux nohup 命令 如果你正在运行一个进程,而且你觉得在退出帐户时该进程还不会结束,那么可以使用nohup命令.该命令可以在你退出帐户之后继续运行相应的进程.nohup就是不挂起的意思(no ...