Description

给出一张 n × n 的棋盘,格子有黑有白。现在要在棋盘上放棋子,要求:

• 黑格子上不能有棋子

• 每行每列至多只有一枚棋子

你的任务是求出有多少种合法的摆放方案。答案模 109+7109+7 。

Input

输入的第一行一个整数 n ( n ≤ 15) 。

接下来一个 n × n 的棋盘( 1 表示黑 ;0 表示白)。

Output

输出一行一个整数,表示合法方案数对 109+7109+7 取模后的结果。

Sample Input

12

000010000000

000000000000

000010011000

001000011011

011000100111

000010110000

101000010001

000001000000

110000000000

000000000010

010010110100

011010010100

Sample Output

349847765

题解

考虑N的范围小于15

可以采用状态压缩

设f[i][j]表示当前第i行,状态为j的方案数

很容易就能够推出转移方程:

f[i][j]=sum(f[i][j-(1<< k)])+f[i-1][j]

其中k满足g[i][j]非黑格子,并且j&(1<<k)不为0

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MOD 1000000007
inline int read()//只需要读入0或1
{
register char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
return ch-48;
}
int N,Ans;
int g[20][20];
int f[20][1<<20];
//f[i][j]表示当前第i行,摆放棋子的情况是j的摆放数
int main()
{
cin>>N;
for(int i=1;i<=N;++i)
for(int j=1;j<=N;++j)
g[i][j]=read(); f[0][0]=1; for(int i=1;i<=N;++i)//枚举行数
{
for(int j=0;j<(1<<N);++j)//枚举当前状态
{
f[i][j]=f[i-1][j];//如果当前状态不放棋子,直接由上一状态转移
for(int k=0;k<N;++k)//枚举位置
{
if(((1<<k)&j)&&(!g[i][k+1]))//如果当前位置不是黑,并且在状态中放了这个棋子
f[i][j]=(f[i][j]+f[i-1][j-(1<<k)])%MOD;//状态转移
}
}
} for(int i=0;i<(1<<N);++i)//统计答案
Ans=(Ans+f[N][i])%MOD; printf("%d\n",Ans);
return 0;
}

【CJOJ2499】【DP合集】棋盘 chess的更多相关文章

  1. dp合集 广场铺砖问题&&硬木地板

    dp合集 广场铺砖问题&&硬木地板 很经典了吧... 前排:思想来自yali朱全民dalao的ppt百度文库免费下载 后排:STO朱全民OTZ 广场铺砖问题 有一个 W 行 H 列的广 ...

  2. 9.15 DP合集水表

    9.15 DP合集水表 显然难了一些啊. 凸多边形的三角剖分 瞄了一眼题解. 和蛤蛤的烦恼一样,裸的区间dp. 设f[i][j]表示i~j的点三角剖分最小代价. 显然\(f[i][i+1]=0,f[i ...

  3. 9.14 DP合集水表

    9.14 DP合集水表 关键子工程 在大型工程的施工前,我们把整个工程划分为若干个子工程,并把这些子工程编号为 1. 2. --. N:这样划分之后,子工程之间就会有一些依赖关系,即一些子工程必须在某 ...

  4. 【DP合集】棋盘 chess

    给出一张 n × n 的棋盘,格子有黑有白.现在要在棋盘上放棋子,要求: • 黑格子上不能有棋子 • 每行每列至多只有一枚棋子 你的任务是求出有多少种合法的摆放方案.答案模 109+7109+7 . ...

  5. 【CJOJ2498】【DP合集】最长上升子序列 LIS

    题面 Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的n个整数组成的序列 ...

  6. CJOJ 【DP合集】最长上升序列2 — LIS2

    题面 已知一个 1 ∼ N 的排列的最长上升子序列长度为 K ,求合法的排列个数. 好题(除了我想不出来我应该找不到缺点), 想一想最长上升子序列的二分做法, 接在序列后面或者替换. 所以对于每一个位 ...

  7. 【DP合集】tree-knapsack

    Description 给出一个 N 个节点的有根树,点编号 1 ∼ N ,编号为 i 的点有权值 v i .请选出一个包含树根的,点数 不超过 K 的连通块,使得点权和最大. Input 输入的第一 ...

  8. 【DP合集】m-knapsack

    给出 n 个物品,第 i 个物品有重量 w i .现在有 m 个背包,第 i 个背包的限重为 c i ,求最少用几个背 包能装下所有的物品. Input 输入的第一行两个整数 n, m ( n ≤ 2 ...

  9. 【DP合集】背包 bound

    N 种物品,第 i 种物品有 s i 个,单个重量为 w i ,单个价值为 v i .现有一个限重为 W 的背包,求能容 纳的物品的最大总价值. Input 输入第一行二个整数 N , W ( N ≤ ...

随机推荐

  1. ajax调用handler,使用HttpWebRequest访问WCF服务

    引言 随着手机及移动设备的普及,移动端的应用也进入了热潮.以前PC端的门户网站,大多也均推出了适配移动设备的网站或者APP,再差的也注册了个公众号.在移动应用开发中,目前据我所了解到的解决方案有:1. ...

  2. Git团队协作之GitFlow & SoucceTree

    GitFlow 定义了一个围绕项目发布的严格的分支模型,仍然使用中央仓库作为开发者的交互中心 GitFlow分支 Master分支 Hotfix紧急修改 Release分支 Develop开发分支 F ...

  3. nf共享

    实验环境是两台Centos6.8 客户端是192.168.3.218 服务端是192.168.3.219 首先配置服务端 1 安装包 用yum安装需要的服务包(两边都安装) yum install n ...

  4. 【转载】什么是Windows USB设备路径,它是如何格式化的?

    http://blog.csdn.net/kingmax54212008/article/details/77837210 用于接口的复合USB设备路径格式 \?usb#vid_ vvvv&p ...

  5. uva1347 经典dp

    详细的思路书上面有,有一点要强调的是题意容易理解错:必须严格向右或则向左移动,不能到了第3个点又回到第2个点.否则这个状态方程是不成立的,变成了NP难问题 状态方程: dp[i][j]=min(dp[ ...

  6. mybatis与spring的整合(使用sqlSession进行crud)

    上次介绍了用接口的方法极大的节省了dao层,只需通过 配置文件和接口就可以实现,这次介绍的是通过splsession来实现dao,这种方法比较灵活: 先不说,上配置文件: 1.web.xml < ...

  7. Springdata mongodb 版本兼容 引起 Error [The 'cursor' option is required, except for aggregate with the explain argument

    在Spring data mongodb 中使用聚合抛出异常 mongodb版本 为 3.6 org.springframework.dao.InvalidDataAccessApiUsageExce ...

  8. 关于xlrd处理合并单元格

    先埋个雷, 最近在做通过excel读取接口测试用例~ 流程等都是自己制定的,打算做完了之后放到GitHub上去哈哈哈. 正式进入正题~ 在写这个框架的时候,遇到了一个问题,就是同一个接口,需要为他准备 ...

  9. 一些图像识别初创公司产品及API搜集ing...

    一些公司的产品路线可以很好地给我们启示,欢迎看客补充. 一.微软认知服务API 1.年龄.性别检测 2.物体分类.识别 3.识别名人 全新的名人识别模块可以识别20万来自全球各地涉及商界.政界.体育界 ...

  10. android的Live架构

    MVC.MVP.MVVM的选择 一开始我们在这几种框架上的选择上就没花太多的心思,因为他们都只是为了实现清晰的分层逻辑,差异化的地方无非是讲UI逻辑.交互逻辑.数据绑定逻辑.业务逻辑堆放在那一层的问题 ...