矩阵快速幂+费马小定理

矩阵也是可以跑费马小定理的,但是要注意这个:

(图是盗来的QAQ)

就是说如果矩阵a[i][i]都是相等的,那么就是mod p 而不是mod p-1了

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
#define MOD 1000000007
#define MAXN 1000000+10
#define ll long long
#define pb push_back
#define ft first
#define sc second
#define mp make_pair
using namespace std;
char s1[MAXN],s2[MAXN];
int n,m;
int a,b,c,d,p;
struct Mat{
    int a[2][2];
    Mat(){
        memset(a,0,sizeof(a));
    }
    friend Mat operator * (const Mat &A,const Mat B){
        Mat C;
        for(int i=0;i<2;i++){
            for(int j=0;j<2;j++){
                for(int k=0;k<2;k++){
                    C.a[i][j]+=(1LL*A.a[i][k]*B.a[k][j]%MOD);
                    C.a[i][j]%=MOD;
                }    
            }    
        }    
        return C;
    }
    friend Mat operator ^ (Mat A,int p){
        Mat B;
        B.a[0][0]=B.a[1][1]=1;
        while(p){
            if(p&1){
                B=B*A;
            }    
            A=A*A;
            p>>=1;
        }
        return B;
    }
};
void solve(){
    scanf("%s%s",s1+1,s2+1);
    scanf("%d%d%d%d",&a,&b,&c,&d);
    p=MOD-1+(a==1);
    int len=strlen(s2+1);
    for(int i=1;i<=len;i++){
        m=(1LL*m*10+s2[i]-'0')%p;
    }
    m--;if(m<0)m+=p;
    Mat A;
    A.a[0][0]=a,A.a[0][1]=b,A.a[1][1]=1;
    Mat B;
    B=A^m;
    Mat C;
    C=B;
    A.a[0][0]=c,A.a[0][1]=d,A.a[1][1]=1;
    C=C*A;
    p=MOD-1+(C.a[0][0]==C.a[1][1]);
    len=strlen(s1+1);
    for(int i=1;i<=len;i++){
        n=(1LL*n*10+s1[i]-'0')%p;
    }
    n--;if(n<0)n+=p;
    C=C^n;
    C=C*B;
    int ans=(C.a[0][0]+C.a[0][1])%MOD;
    printf("%d\n",ans);
}
int main()
{
    //freopen("data.in","r",stdin);
    solve();
    return 0;
}   

洛谷P1397 [NOI2013]矩阵游戏的更多相关文章

  1. 洛谷P1397 [NOI2013]矩阵游戏(十进制矩阵快速幂)

    题意 题目链接 Sol 感觉做这题只要对矩阵乘法理解的稍微一点就能做出来对于每一行构造一个矩阵A = a 1      0 b列与列之间的矩阵为B = c 1      0 d最终答案为$A^{n - ...

  2. 【bzoj3240 && 洛谷P1397】矩阵游戏[NOI2013](矩阵乘法+卡常)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3240 这道题其实有普通快速幂+费马小定理的解法……然而我太弱了,一开始只想到了矩阵乘法的 ...

  3. P1397 [NOI2013]矩阵游戏(递推)

    P1397 [NOI2013]矩阵游戏 一波化式子,$f[1][m]=a^{m-1}+b\sum_{i=0}^{m-2}a^i$,用快速幂+逆元求等比数列可以做到$logm$ 设$v=a^{m-1}, ...

  4. 洛谷 P1129 [ZJOI2007]矩阵游戏 解题报告

    P1129 [ZJOI2007]矩阵游戏 题目描述 小\(Q\)是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个\(N*N\)黑白方阵进行(如同国际象棋一般 ...

  5. BZOJ1059或洛谷1129 [ZJOI2007]矩阵游戏

    BZOJ原题链接 洛谷原题链接 通过手算几组例子后,很容易发现,同一列的\(1\)永远在这一列,且这些\(1\)有且仅有一个能产生贡献,行同理. 所以我们可以只考虑交换列,使得每一行都能匹配一个\(1 ...

  6. 【洛谷P1129】矩阵游戏

    题目大意:给定一个 N*N 的矩阵,有些格子是 1,其他格子是 0.现在允许交换若干次行和若干次列,求是否可能使得矩阵的主对角线上所有的数字都是1. 题解:首先发现,交换行和交换列之间是相互独立的.主 ...

  7. 洛谷P1129 [ZJOI2007]矩阵游戏 题解

    题目链接:https://www.luogu.org/problemnew/show/P1129 分析: 这道题不是很好想,但只要想的出来,代码不成问题. 思路1 举几个例子,我们发现, 对于任何数来 ...

  8. P1397 [NOI2013]矩阵游戏

    传送门 首先显然可以矩乘快速幂然后 $T$ 飞 看一眼题解发现因为这一题矩阵的特殊性所以可以对矩阵的次数欧拉降幂 然而我并不懂证明,所以我选择暴力乱搞的做法 十进制快速幂,然后注意一下常数,还有矩阵乘 ...

  9. 洛谷 [P1129] [ZJOI2007] 矩阵游戏

    这竟然是一道二分图 乍一看,可能是用搜索做,但是这个数据范围,一定会T. 我们观察发现,无论怎样变换,同一行的一定在同一行,同一列的一定还在同一列.所以说,一行只能配一列.这样,我们的目标就是寻找是否 ...

随机推荐

  1. python实现线性回归

    参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 一般而言,这几个包是比较常见的: • matplotlib,用于绘图 • numpy,数组处 ...

  2. 软件工程第三次作业-结对作业NO.1

    第一次结对作业 结对人员: 潘伟靖 170320077 张 松 170320079 方案分析 我们对所供的资料进行分析,如下: 从提供的资料可以看出,需要解决的问题以及满足的需求主要有两类目标用户,各 ...

  3. win7开启wifi

    在启用本地共享连接时,出现的错误! 我已经建了一个无线临时网络,来启用共享用来上网的!Internet连接共享访问被启用时,出现了一个错误(null)?而且这错误也会在系统日志里留下记录,都是些莫名其 ...

  4. JAVAGUI设计步骤

    ①创建容器 首先要创建一个GUI应用程序,需要创建一个用于容纳所有其它GUI组件元素的载体,Java中称为容器.典型的包括窗口(Window).框架(Frame/JFrame).对话框(Dialog/ ...

  5. python利用twilio模块给自己发短信

    1.访问http://twilio.com/并填写注册表单.注册了新账户后,你需要验证一个手机号码,短信将发给该号码. 2.Twilio 提供的试用账户包括一个电话号码,它将作为短信的发送者.你将需要 ...

  6. MySQL-压缩版-windows安装

    1.首先去dev.mysql.com/downloads/mysql/下载MySQL的压缩包,然后解压到任意盘符下. 2.打开系统变量在Path下追加mysql的路径(例如:C:\mysql-5.7. ...

  7. Service Worker和HTTP缓存

    很多人,包括我自己,初看Service Worker多一个Cache Storage的时候,就感觉跟HTTP长缓存没什么区别. 例如大家讲的最多的Service Worker能让网页离线使用,但熟悉H ...

  8. 第一章 创建WEB项目

    第一章   创建WEB项目 一.Eclipse创建WEB项目 方法/步骤1 首先,你要先打开Eclipse软件,打开后在工具栏依次点击[File]>>>[New]>>&g ...

  9. kali linux 2.0 web 渗透测试 电子书

    原创 2017-05-31 玄魂工作室 玄魂工作室 打起精神,重新开启订阅号的原创文章写作工作,但是需要点时间,请耐心等待. 求资料的同学,没有及时回复的,请再次留言,我会尽快处理.今天分享两本电子书 ...

  10. Python-面向对象(二)-Day7

    1.字段 12.方法 43.属性 63.1.属性的基本使用 73.2.实例:对于主机列表 83.3.属性的两种定义方式 94.对于类的成员而言都有两种形式: 144.1.私有成员和公有成员的访问限制不 ...